RAYMARIL 11615 ## APPENDIX A ANALYTICAL CHEMISTRY RESULTS APPENDIX A-1 RESULTS OF SEDIMENT CHEMICAL ANALYSES: ORGANICS, INORGANICS, SEM/AVS, TOC, GRAIN SIZE Appendix A-1. Sediment Chemical Analysis Results for the Raymark Phase III Ecological Risk Assessment Investigation. | | C-1-SED-SMP | C-2-SED-SMP | C-3-SED-SIMP | D-1-SED-SIMP | D-2-SED-SMP | 3-SED-SIMP | -SED-SMP | S-SED-SMP | D-6-SED-SMP | |------------------------------------|-------------|------------------|--------------|-------------------------|-------------|------------|----------|-----------|-------------| | %TOC | 1.30 | 3.10 | 4.10 | | | 3 8 | 1 8 | 3 2 2 | 1 % 8 | | Metals (mg/kg) | | 3.10 | 4.10 | 1.70 | 3.40 | 2.00 | 3.40 | 1.40 | 1.50 | | Arsenic | 2.40 | 9.40 | 1 040 | | | | | | | | Cadmium | 0.22 | 0.31 | 9,10 | 3.30 | 6.50 | 2.90 | 5.90 | 1.60 | 3.80 | | Chromium | 25.50 | 77,20 | 48.30 | 0.16 J | 0.32 | 2.10 | 0.63 | 0.34 | 0.60 | | Copper | 105 | 284 | 504 | 14.30 | 25.80 | 36.10 | 172 | 9.70 | 51.80 | | Lead | 37.50 | 76.60 | 134 | 22.60 | 73.50 | 210 | 155 | 55.60 | 266 | | Mercury | 0.21 | 0.59 | 0.80 | 7.30 | 29.10 | 87.60 | 56.30 | 37.70 | 41.90 | | Nickel | 6.80 | 17.60 | 20.20 | 0.04 | 0.69 | 0.08 | 0.26 | 0.12 | 0.46 | | Silver | 0.22 | 0.57 | 0.47 | 9.30 | 18.10 | 20.70 | 22.00 | 5.50 | 11,20 | | Zinc | 60.40 | 169 | 243 | 0.04 U | 0.16 J | 0.85 | 0.41 | 0.52 | 0.28 | | Polyaromatic Hydrocarbons (PAHs) | (µa/ka) | 1 | 243 | 41.50 | 118 | 178 | 158 | 56.70 | 162 | | ,6,7-Trimethylnaphthalene | 3.00 | 8.00 | 5.00 | T | | | | | | | -Methylnaphthalene | 4.00 | 10.00 | 6.00 | 1.00 U | 1.50 U | 88.00 | 6.00 | 14.00 | 15.00 | | -Methylphenanthrene | 20.00 | 58.00 | 22.00 | 1.00 U | 1.50 U | 77.00 | 12.00 | 13.00 | 8.00 | | .6-Dimethylnaphthalene | 4.00 | 12.00 | 7.00 | 1.00 U | 14.00 | 410 | 56.00 | 40.00 | 16.00 | | -Methylnaphthalene | 9.00 | 18.00 | 14.00 | 1.00 U | 1.50 U | 95.00 | 11.00 | 11.00 | 13.00 | | cenaphthene | 4.00 | 22.00 | 6.00 | 1.00 U | 4.00 | 140 | 20.00 | 20.00 | 16.00 | | cenaphthylene | 23.00 | 74.00 | 30.00 | 1.00 U | 3.00 | 360 | 76.00 | 12.00 | 9.00 | | Inthracene | 35.00 | 120 | 62.00 | 1.00 U | 18.00 | 530 | 45.00 | 120 | 48.00 | | enzo(a)anthracene | 130 | 390 | 220 | 3.00 | 39.00 | 2200 | 200 | 180 | 87.00 | | enzo(a)pyrene | 120 | 380 | 190 | 9.00 | 130 | 5600 | 490 | 660 | 310 | | enzo(b)fluoranthene | 110 | 510 | 160 | 7.00 | 99.00 | 4400 | 480 | 570 | 300 | | enzo(e)pyrene | 98.00 | 310 | 160 | 8.00 | 93.00 | 6200 | 650 | 730 | 350 | | enzo(g,h,l)perylens | 91.00 | 260 | 140 | 7.00
6.00 | 74.00 | 3200 | 360 | 380 | 200 | | enzo(k)fluoranthene | 110 | 120 | 150 | | 65,00 | 3000 | 330 | 330 | 180 | | lphenyl | 3.00 | 6.00 | 6.00 | 6.00 | 77.00 | 1300 | 160 | 210 | 140 | | hrysene | 120 | 380 | 180 | 1.00 U | 1.50 U | 210 | 6.00 | 13.00 | 5.00 | | ibenz(a,h)anthracene | 18.00 | 58.00 | 28,00 | 8.00 | 110 | 4600 | 470 | 580 | 270 | | voranthene | 190 | 650 | 310 | 1.00 U | 14.00 | 690 | 74.00 | 100.00 | 44.00 | | Uorene | 5.00 | 30.00 | 10.00 | 17.00 | 200 | 12000 | 910 | 1100 | 400 | | um PAHs (6 High Molecular Weight)1 | 639 | 1910 | 991 | 1.00 U | 4.00 | 480 | 54.00 | 18.00 | 8.00 | | deno(1,2,3-cd)pyrene | 97.00 | 290 | 150 | 58.00 | 973 | 28490 | 2534 | 3130 | 1411 | | m PAHs (7 Low Molecular Weight)2 | 184 | | | 6.00 | 71,00 | 3700 | 380 | 400 | 210 | | sphthalene | 12.00 | 58.00
260 | 279 | 22.00 | 161 | 14920 | 1198 | 576 | 340 | | rylene | 61.00 | 52.00 | 27.00 | 3.00 | 10.00 | 210 | 33.00 | 26.00 | 22.00 | | enanthrene | 96.00 B | 52.00
59.00 B | 63.00 | 14.00 | 420 | 1200 | 110 | 120 | 87.00 | | rene | 200 | 59.00 B | 130 B | 12.00 B | 83.00 B | 11000 B | 770 B | 200 B | 150 B | | m PAHs | 1563 | 50.00 | 370
2446 | 18.00 | 180 | 12000 | 910 | 1100 | 490 | | | | | 2440 | 134
B'=Below CRDL; a | 1714 | 73690 | 6613 | 6947 | 3378 | One-half the MDL taken where DQ = "U", ^{1 -} Sum of High Molecular Weight PAHs = Benzo(a)anthracene, Benzo(a)pyrene, Chrysene, Dibenz(a,h)anthracene, Fluoranthene, and Perylene; Perylene not available for Reference ^{2 -} Sum of Low Molecular Weight PAHs = 2-Methylnaphthalene, Acenaphthene, Acenaphthylene, Anthracene, Fluorene, Naphthalene, and Phenanthrene. ^{3 -} Sum of Congeners x 2 does not include PCB077,104, and 154. ^{4 -} Dioxin = 2,3,7,8 TCDD Equivalent; see Appendix D-3. 5 - Reference Station - GM08 (SAIC, 1998). Total PCBs = 16 Congeners x 2. Appendix A-1. Sediment Chemical Analysis Results for the Raymark Phase III Ecological Risk Assessment Investigation. | | | | | | | · · | , <u>,</u> | | | |-------------------------------------|--|----------------|----------------|------------|----------------|-----------|------------|---------|-------------| | r | ه ا | SED-SIMP | 2-SED-SIMP | 3-SED-SIMP | SED-SIMP | 1-SED-SMP | SED-SMP | SED-SMP | | | 4 | 4-SED-FD | ۱ % | % | , ž | X | 1 % | 💯 | 💯 | | | 1 | <u> </u> |] 🔛 | 🙀 | l 💥 | l 🖼 | i ii |] 📈 | 📈 | i § | | ŀ | 8 8 | 1 8 | 1 ½ g | ₩ 8 | ∛ g | 7 8 | l 🥳 g | 🥳 g | \$ 2 | | %TOC | 2.80 | 9.30 | 28.30 | 7.00 | 22.00 | 4.10 | 14,30 | 13.90 | 5.86 | | Metals (mg/kg) | 2.80 | 3.30 | 20.30 | 7,00 | 22.00 | 4.10 | 14.30 | 13.90 | 5.80 | | Arsenic | | | T 770 | | T | 1 - 40 | 1 2 22 | | | | Cadmium | 8.90 | 13.60 | 7.70
0.03 U | 6.50 | 8.30
0.05 U | 2.60 | 9.40 | 4.30 | 17.90 | | Chromium | 2.60 | | | 0.12 J | 47.70 | 0.80 | 0.16 J | 0.04 U | 1.50 B | | | | 139 | 53.00 | 20.80 | | 36.40 | 390 | 47.70 | 231 | | Copper
Lead | 1560 | 278 | 130 | 36.60 | 99.40 | 106 | 761 | 174 | 661 | | | 165 | 290 | 173 | 89.80 | 153 | 189 | 571 | 313 | 158 | | Mercury | 2.50 | 0.88 | 0.27 | 0.15 | 0.31 | 0.19 | 0.55 | 0.39 | 1.20 | | Nickel
Silver | 34.20 | 26.40 | 17.10 | 17.50 | 19.80 | 11.50 | 65.90 | 23.80 | 37.40 E | | | 1.10 | 4.50 | 2.00 | 0.24 | 1.10 | 0.30 | 1.10 | 0.50 | 3.00 | | Zinc | 780 | 191 | 85.50 | 115 | 86.60 | 191 | 982 | 378 | 292 | | Polyaromatic Hydrocarbons (PAHs) (| | | | | | | | | L | | 1,6,7-Trimethylnaphthalene | 54.00 | 17.00 | 10.00 U | 27.00 | 7.50 U | 23.00 | 26.00 | 100.00 | L | | 1-Methylnaphthalene | 21.00 | 32.00 | 34.00 | 24.00 | 17.00 | 21.00 | 54,00 | 220 | L | | 1-Methylphenanthrene | 69.00 | 87,00 | 130 | 250 | 83.00 | 240 | 260 | 350 | L | | 2,6-Dimethylnaphthalene | 42.00 | 23.00 | 10.00 U | 23.00 | 7.50 U | 33.00 | 78.00 | 170 | | | 2-Methylnaphthalene | 58.00 | 50.00 | 46.00 | 36.00 | 25.00 | 40.00 | 99.00 | 130 | 330 U | | Acenaphthene | 32.00 | 21.00 | 10.00 U | 79.00 | 7.50 U | 35.00 | 59.00 | 1100 | 330 U | | Acenaphthylene | 190 | 260 | 210 | 520 | 130 | 360 | 680 | 940 | 330 U | | Anthracene | 270 | 270 | 230 | 950 | 150 | 620 | 660 | 3200 | 330 U | | Benzo(a)anthracene | 870 | 730 | 660 | 3300 | 460 | 1800 | 2400 | 11000 | 190 J | | Benzo(a)pyrene | 840 | 950 | 800 | 2900 | 540 | 2000 | 3300 | 9700 | 230 J | | Benzo(b)fluoranthene | 990 | 1400 | 1100 | 4400 | 770 | 2600 | 4500 | 8800 | 400 XJ | | Benzo(e)pyrene | 540 | 820 | 980 | 2300 | 730 | 1500 | 3000 | 7600 | | | Benzo(g,h,i)perylene | 490 | 760 | 890 | 1900 | 620 | 1400 | 3200 | 7200 | 74.00 J | | Benzo(k)fluoranthene | 330 | 410 | 930 | 970 | 690 | 710 | 2600 | 8500 | 390 XJ | | Biphenyl | 16.00 | 14.00 | 10,00 U | 89.00 | 7.50 U | 30.00 | 35.00 | 340 | | | Chrysene | 770 | 970 | 1100 | 3300 | 750 | 1800 | 2800 | 8700 | 220 J | | Dibenz(a,h)anthracene | 120 | 170 | 170 | 460 | 120 | 320 | 640 | 1500 | 330 U | | Fluoranthene | 1200 | 1600 | 1700 | 6200 | 1200 | 3200 | 5700 | 21000 | 330 J | | Fluorene | 24.00 | 28.00 | 10.00 U | 140 | 7.50 U | 78.00 | 64.00 | 920 | 330 U | | Sum PAHs (6 High Molecular Weight)1 | 3980 | 4590 | 4500 | 16790 | 3180 | 9540 | 15520 | 54300 | 1300 | | Indeno(1,2,3-cd)pyrene | 570 | 860 | 1000 | 2400 | 710 | 1600 | 3600 | 8500 | 110 J | | Sum PAHs (7 Low Molecular Weight)2 | 1024 | 1693 | 1443 | 4266 | 906 | 2695 | 3862 | 14240 | 2100 | | Naphthalene | 60.00 | 84.00 | 67.00 | 41.00 | 38.00 | 62.00 | 200 | 150 | 330 U | | Perylene | 180 | 170 | 160 | 630 | 110 | 420 | 680 | 2400 | | | Phenanthrene | 390 B | 980 B | 870 B | 2500 B | 550 B | 1500 B | 2100 B | 7800 B | 120 J | | Pyrene | 1200 | 1700 | 1600 | 6200 | 1100 | 3300 | 5600 | 17000 | 410 J | | Sum PAHs | 9326 | 12406 | 12727 | 39639 | 8831 | 23692 | 42335 | 127320 | 7094 | | | DO = Data Qualifi | | | | | | | 12.020 | ,,,,,, | DQ = Data Qualifier; "U"=Undetected; "J"=Estimated; "B"=Below CRDL; and "NA"=Not Analyzed. One-half the MDL taken where DQ = "U". ^{1 -} Sum of High Molecular Weight PAHs = Benzo(a)enthracene, Benzo(a)pyrene, Chrysene, Dibenz(a,h)anthracene, Fluoranthene, and Perylene; Perylene not available for Reference ^{2 -} Sum of Low Molecular Weight PAHs = 2-Methylnephthelene, Acenephthene, Acenephthylene, Anthracene, Fluorene, Naphthelene, and Phenenthrene. ^{3 -} Sum of Congeners x 2 does not include PCB077,104, and 154. ^{4 -} Dioxin = 2,3,7,8 TCDD Equivalent; see Appendix D-3. ^{5 -} Reference Station - GM08 (SAIC, 1998). Total PCBs = 16 Congeners x 2. Appendix A-1. Sediment Chemical Analysis Results for the Raymark Phase III Ecological Risk Assessment Investigation. | | | | | | | | | | 3 | |--|--------------|----------------|---------------|---------|---------|----------------|----------------|--------------|----------------| | | C-1-SED-SIMP | 2-SED-SMP | 3-SED-SMP | ED-SIMP | SED-SMP | 3-SED-SMP | 1 | 3 | 38 | | | 🕁 | ا با | l á | ĺå | يُوَ | ă | SED-SM | 1 3 | 1 % | | | 9 _ | 7 |] 7 | 9 | | 9 | % | S-SED-SIM | 99 (| | | 1 5 8 | 1 3 8 | 138 | 1 2 8 | 1 2 8 | 1 2 2 | 1 7 8 | 1 8 8 | 1 2 8 | | Organochiorine Pesticides (µg/kg) | | | | | | | | | 1 9 9 | | Aldrin | 0.39 U | 0.55 U | 0.60 U | 0.40 U | 0.65 U | 0.33 U | 0.55 U | 0.42 U | 0.40 U | | Alpha-BHC | 0.39 U | 0.55 U | 0.60 U | 0.40 U | 0.65 U | 0.33 U | 0.55 U | 0.42 U | 0.40 U | | Alpha-Chlordane | 0.39 U | 0.55 U | 0.60 U | 0.40 U | 0.65 U | 0.33 U | 0.55 U | 0.42 U | 0.40 U | | Beta-BHC |
0.39 U | 0.55 U | 0.60 U | 0.40 U | 0.65 U | 0.33 U | 0.55 U | 0.42 U | 0.40 U | | Delta-BHC | 0.39 U | 0.55 U | 0.60 U | 0.40 U | 0.65 U | 0.33 U | 0.55 U | 0.42 U | 0.40 U | | Dieldrin
Endosulfan f | 0.39 U | 0.55 U | 0.60 U | 0.40 U | 0.65 U | 0.33 U | 0.55 U | 0.42 U | 0.40 U | | Endosulfan II | 0.39 U | 0.55 U | 0.60 U | 0.40 U | 0.65 U | 0.33 U | 0.55 U | 0.42 U | 0.40 U | | Endosulfan Sulfate | 0.39 U | 0.55 U | 0.60 U | 0.40 U | 0.85 U | 1.90 | 0.55 U | 0.42 U | 0.40 U | | Endrin | 0.39 U | 0.55 U | 0.60 U | 0.40 U | 0.65 U | 0.33 U | 0.55 U | 0.42 U | 0.40 U | | Endrin Aldehyde | 0.39 U | 0.55 U | 0.60 U | 0.40 U | 0.65 U | 0.33 U | 0.55 Ü | 0.42 U | 0.40 U | | Gamma-BHC(Lindane) | 0.39 U | NA NA | NA NA | NA_ | NA. | NA NA | NA. | NA NA | NA NA | | Gamma-Chlordane | | 0.55 U | 0.60 U | 0.40 U | 0.65 U | 0.33 U | 0.55 U | 0.42 U | 0.40 U | | Heptachlor | 0.39 U | 0.55 U | 0.60 U | 0.40 U | 0.65 U | 0.33 U | 0.55 U | 0.42 U | 0.40 U | | Heptachlor Epoxide | 0.39 U | 0.55 U | 0.60 U | 0.40 U | 0.65 U | 0.33 U | 0.55 U | 0.42 U | 0.40 U | | Hexachlorobenzena | 0.39 U | 0.55 U | 0.60 U | 0.40 U | 0.65 U | 0.33 U | 0.55 U | 0.42 U | 0.40 U | | Methoxychlor | 1.90 U | 2.85 U | 2.90 U | 2.00 U | 3.25 U | 0.33 U | 0.55 U | 0.42 U | 0.40 U | | Mirex | 0.39 U | 0.55 U | 0.60 U | 0.40 U | 0.65 U | 1.65 U | 2.85 U | 2.05 U | 2.00 U | | o.p'-DDD | 0.39 U | 0.55 U | 0.60 U | 0.40 U | 0.65 U | 0.33 U | 0.55 U | 0.42 U | 0.40 U | | o.pDDE | 0.39 U | 0.55 U | 0.60 U | 0.40 U | 0.65 U | 0.33 U | 0.55 U | 0.42 U | 0.40 U | | o,p'-DDT | 0.39 U | 0.55 U | 0.60 U | 0.40 U | 0.65 U | 0.33 U | 0.55 U | 0.42 U | 0.40 U | | b'b,-DD0 | 0.39 U | 3.80 | 0.60 U | 0.40 U | 0.65 U | 0.33 U | 3.70 | 20.00 | 1.80 | | p,p:-DDE | 0.39 U | 0.55 U | 0.60 U | 0.40 U | 0.65 U | 0.33 U | 0.55 U | 0.42 U | 0.40 U | | p.p'-DOT | 0.39 U | 0.55 U | 0.60 U | 0.40 U | 0.65 U | 0.33 U | 0.55 U | 0.42 U | 0.40 U | | Toxaphene
Polychlorinated Biphenyls (PCBs) (¿ | 4.80 U | 7.00 U | 7.00 U | 5.00 U | 8.00 U | 4.10 U | 7.00 U | 5.00 U | 5.00 U | | POTYCHIOMISTEO Biphenyts (PCBs) (¿
PCB008 | | 1 | | | | | | | | | PC8018 | 0.39 U | 0.55 U | 0.60 U | 0.40 U | 0.65 U | 0.33 U | 0.55 U | 320 | 0.40 U | | PC8028 | 0.39 U | 0.55 U | 0.60 U | 0.40 U | 0.65 U | 0.33 U | 0.5\$ U | 20.50 U | 0.40 U | | PCB029 | 0.39 U | 0.55 U | 0.60 U | 0.40 U | 0.65 U | 0.33 U | 2.50 | 41.00 | 1.30 | | PCB044 | 0.39 U | 0.55 U | 0.60 U | 9.40 U | 0.65 U | 0.33 U | 0.55 U | 20.50 U | 0.40 Ü | | PCB050 | 0.39 U | 0.55 U | 0.60 U | 0.40 U | 0.65 U | 0.33 U | 4.50 | 230 | 0.40 U | | PCB052 | 0.39 U | 0.55 U | 0.60 U | 0.40 U | 0.65 U | 0.33 U | 0.55 U | 20.50 U | 0.40 U | | PC8066 | 0.39 U | 0.55 U | 0.60 U | 0.40 U | 0.65 U | 0.33 U | 3.60 | 1000 | 2.30 | | PC8077 | 0.39 U | 3.50 | 0.60 U | 0.40 U | 0.65 U | 2.90
4.70 | 8.20 | 20.50 U | 0.40 U | | CB087 | 0.39 U | 0.55 U | 0.60 U | 0.40 U | 0.65 U | 0.33 U | 0.55 U | 20.50 U | 0.40 U | | PCB101 | 4.70 | 9.70 | 0.60 U | 0.40 U | 0.65 U | 0.33 U | 17.00 | 20.50 U | 0.40 U | | 2CB104 | 0.39 U | 0.55 U | 0.60 U | 0.40 U | 0.65 U | 0.33 U | | 160 | 0.40 U | | PCB105 | 0.95 | 4.50 | 2.20 | 0.40 U | 0.65 U | 1.20 | 0.55 U
2.60 | 20.50 U | 0.40 U | | CB118 | 0.97 | 1.80 | 0.60 U | 0.40 U | 0.65 U | 5.10 | 3.50 | 20.50 U | 1.70
0.40 U | | PCB126 | 039 U | 2.40 | 3.20 | 0.40 U | 0.65 U | 0.33 U | 1.30 | 20.50 U | 0.40 U | | PCB128 | 0.39 U | 0.55 U | 0.60 U | 0.40 U | 0.65 U | 0.33 U | 0.55 U | 20.50 U | 0.40 U | | CB138 | 0.94 | 2.20 | 0.60 U | 0.40 U | 0.65 U | 1.70 | 4.10 | 150 | 1.40 | | CB153 | 1.10 | 4.70 | 0.60 U | 0.40 U | 0.65 U | 1.10 | 5.00 | 150 | 2.20 | | CB154 | 0.39 U | 0.55 U | 0.60 U | 0.40 U | 0.65 U | 2.00 | 0.55 U | 20.50 U | 0.40 U | | C8170
C8180 | 0.39 U | 12.00 | 0.60 U | 0.40 U | 0.65 U | 2.90 | 0.55 U | 20.50 U | 0.40 U | | CB180
CB187 | 2.40 | 7.40 | 8.00 | 0.40 U | 0.65 U | 0.33 U | 9.00 | 49.00 | 3.90 | | CB187 | 1.50 | 6.40 | 4.90 | 0.40 U | 0.65 U | 0.33 U | 5.10 | 20.50 U | 3.20 | | CB195 | 0.39 U | 1.60 | 0.60 U | 0.40 U | 0.65 U | 1.40 | 1.90 | 20.50 U | 1.20 | | CB200 | 0.39 U | 4.20 | 0.60 U | 0.40 U | 0.65 U | 0.33 U | 0.55 U | 20.50 U | 1.10 | | CB206 | 0.39 U | 0.55 U | 0.60 U | 0.40 U | 0.65 U | 0.33 U | 0.55 U | 20.50 U | 0.40 U | | CB209 | 0.39 U | 6.50 | 0.60 U | 0.40 U | 0.65 U | 0.33 U | 20.00 | 20.50 U | 4.00 | | otal PCBs (Sum of Congeners x 2) ² | 38.21 | 159 | 0.80 U | 0.40 U | 3.00 | 0.33 U | 0.55 U | 20.50 U | 0.40 U | | ioxins (ng/kg) | | 138 | 60.60 | 19.20 | 35.90 | 43.65 | 188 | 5055 | 55.80 | | loxin-Mammal | 1 | | | | | | | | | | ioxin-Fish | 4.61 | 13.36 | 10.04 | 2.34 | 2.83 | 25.62 | 13.36 | 227 | 5.07 | | loxin-Bird | 6.34 | 11.82
22.76 | 9.17
19.57 | 2.23 | 2.56 | 23.38
37.49 | 12.12 | 223 | 4.64 | | | | | | | 3.71 | | 25.36 | 324 | | DQ = Deta Qualifier; "U"=Undetected; "J"=Estimated; "B"=Below CRDL; and "NA"=Not Analyzed. One-half the MDL taken where DQ = "U". ^{1 -} Sum of High Molecular Weight PAHs = Benzo(a)anthracene, Benzo(a)pyrene, Chrysene, Dibenz(a,h)anthracene, Fluoranthene, and Perylene; Perylene not available for Reference ^{2 -} Sum of Low Molecular Weight PAHs = 2-Methylnaphthelene, Acenaphthene, Acenaphthylene, Anthracene, Fluorene, Naphthalene, and Phenanthrene. ^{3 -} Sum of Congeners x 2 does not include PCB077,104, and 154. ^{4 -} Dioxin = 2.3,7 8 TCDD Equivalent: see Appendix D-3. ^{5 -} Reference Station - GM08 (SAIC, 1998). Total PCBs = 16 Congeners x 2. Appendix A-1. Sediment Chemical Analysis Results for the Raymark Phase III Ecological Risk Assessment Investigation. | | | _ | Γ Λ | | Λ . | | Ι Δ | | | |--------------------------------------|-------------|-------------|------------------|-----------|----------------|------------|------------------|------------|--| | | م ا | :1-SED-SAMP | 2-SED-SMP | 3 | 4-SED-SIM | 1-SED-SIMP | SED-SIMP | 3-SED-SIMP | ا ۔ | | | 1 3 | , a | % | 3-SED-SAM | l % | l % | 1 % | % | \$ | | | l m |)ii | 12 | l ji | l 🖫 | 📆 | 1 1 2 | 133 | <u> </u> | | | 0-6-SED-FD | <u> </u> | 🐇 g | <u> </u> | * 8 | i g | ه ۱۸ | ž g | 2 8 | | | Δδ | ψō | ے شا | w a | <u> </u> | ے ک | 1 4 0 | <u> </u> | 4 0 | | Organochlorine Pesticides (µg/kg) | L | | | | | | | | | | Aldrin | 0.55 U | 1.25 U | 4.10 U | 0.90 U | 3.05 U | 0.90 U | 2.70 U | 3.60 U | | | Alpha-BHC | 0.55 U | 1.25 U | 4.10 U | 0.90 U | 3.05 U | 0.90 U | 2.70 U | 3.60 U | | | Alpha-Chlordane | 0.55 U | 1.25 U | 4.10 U | 0.90 U | 3.05 U | 0.90 U | 2.70 U | 3.60 U | | | Beta-BHC | 0.55 U | 1.25 U | 4.10 U | 0.90 U | 3.05 U | 0.90 U | 2.70 U | 3.60 U | | | Delta-BHC | 0.55 U | 1.25 U | 4.10 U | 0.90 U | 3.05 U | 0.90 U | 2.70 U | 3.60 U | | | Dieldrin | 0.55 U | 1.25 U | 4.10 U | 0.90 U | 3.05 U | 0.90 U | 2.70 U | 3.60 U | | | Endosulfan I | 0.55 U | 1.25 U | 4.10 U | 0.90 U | 3.05 U | 0.90 U | 2.70 U | 3,60 U | | | Endosulfan II | 0.55 U | 1.25 U | 4.10 U | 0.90 U | 3.05 U | 0.90 U | 2.70 U | 3.60 U | | | Endosulfan Sulfate | 0.55 U | 1.25 U | 4.10 U | 0.90 U | 3.05 U | 0.90 U | 2.70 U | 3.60 U | | | Endrin | | 1.25 U | 4.10 U | 0.90 U | 3.05 U | 0.90 U | 2.70 U | 3.60 U | - | | Endrin Aldehyde | | | | | J.US U | | | 3.60 U | | | | NA NA | NA. | NA NA | NA. | | NA NA | NA NA | | | | Gamma-BHC(Lindane) | 0.55 U | 1.25 U | 4.10 U | 0.90 U | 3.05 U | 0.90 U | 2.70 Ū | 3.60 U | | | Garnma-Chlordane | 0.55 U | 1.25 U | 4.10 U | 0.90 U | 3.05 U | 0.90 U | 2.70 U | 3.60 U | | | Heptachlor | 0.55 U | 1.25 U | 4.10 U | 0.90 U | 3.05 U | 0.90 U | 2.70 U | 3.60 U | | | Heptachlor Epoxide | 0.55 U | 1.25 U | 4.10 U | 0.90 U | 3.05 U | 0.90 U | 2.70 U | 3.60 U | | | Hexachlorobenzene | 0.55 U | 11.00 | 4,10 U | 0.90 U | 3.05 U | 0.90 U | 2.70 U | 3.60 U | | | Methoxychior | 2.70 U | 6.00 U | 20.50 U | 4.65 U | 15.00 U | 4.45 U | 13.50 U | 18.00 U | | | Mirex | 0.55 U | 1.25 U | 4.10 U | 0.90 U | 3.05 U | 0.90 U | 2.70 U | 3.60 U | | | o.p-DDD | 0.55 U | 125 U | 4.10 U | 0.90 U | 3.05 U | 0.90 U | 2.70 U | 3.60 U | | | o,p'-DDE | 0.55 U | 1.25 U | 4.10 U | 0.90 U | 3.05 U | 7.30 | 270 U | 3.60 U | | | o,p'-DDT | 0.55 U | 1.25 U | 4.10 U | 0.90 U | 3.05 U | 0.90 U | 2.70 U | 3.60 U | <u> </u> | | p.p'-ODO | 0.55 U | 1.25 U | 23.00 | 0.90 U | 24.00 | 36.00 | 70.00 | 120 | | | p.p -DDE | 0.55 U | 1.25 U | 4.10 U | 4.00 | 3.05 U | 0.90 U | 30.00 | 99.00 | | | p,p·DDT | 0.55 U | 1.25 U | 4.10 U | 0.90 U | 3.05 U | 4.20 | 24.00 | | | | Toxaphene | 7.00 U | 15.50 U | | | | | | | | | Polychlorinated Biphenyls (PCBs) (us | | 15.50 U | 50.00 U | 11.50 U | 38.00 U | 11.00 U | 33.50 U | 45.00 U | | | | | | | | ··· | | | , | | | PCB008 | 0.55 U | 170 | 4.10 U | 0.90 U | 3.05 U | 0.90 U | 2.70 U | 3.60 U | ļl | | PCB018 | 0.55 U | 3000 | 4.10 U | 0.90 U | 3.05 U | 0.90 U | 2.70 U | 3.60 U | | | PCB028 | 0.55 U | 1700 | 28.00 | 0.90 U | 3.05 U | 0.90 U | 2.70 U | 3.60 U | | | PCB029 | 0.55 U | 60.00 U | 4.10 U | 0.90 U | 3.05 U | 0.90 U | 2.70 U | 3.60 U | | | PCB044 | 0.55 U | 820 | 19.00 | 0.90 U | 15.00 | 0.90 U | 2.70 U | 25.00 | | | PCB050 | 0.55 U | 60.00 U | 4.10 U | 0.90 U | 3.05 U | 0.90 U | 2.70 U | 3.60 U | | | PC8052 | 0.55 U | 2000 | 23.00 | 0.90 U | 9.60 | 0.90 U | 2.70 U | 3.60 U | | | PCB066 | 1.90 | 2100 | 54.00 | 0.90 U | 32.00 | 0.90 U | 5.40 | 3.60 U | | | PCB077 | 0.55 U | 60.00 U | 4.10 U | 0.90 Lf | 3.05 U | 0.90 U | 2.70 U | 3.60 U | | | PCB087 | 0.55 U | 680 | 20.00 | 0.90 U | 3.05 U | 0.90 Ü | 2.70 U | 9.40 | | | PCB101 | 0.55 U | 2700 | 53.00 | 0.90 U | 18.00 | 0.90 U | 170 | 16.00 | | | PCB104 | 0.55 U | 60.00 U | 4.10 U | 0.90 U | 3.05 U | 0.90 U | 2.70 U | 3.60 U | | | PCB105 | 0.55 U | 560 | 38.00 | 0.90 U | 16.00 | 13.00 | 28.00 | 98.00 | | | PCB118 | 0.55 U | 1600 | 36.00 | 0.90 U | 14.00 | 0.90 U | 24.00 | 33.00 | | | PCB126 | 0.55 U | 140 | 4.10 U | 0.90 U | 3.05 U | 0.90 U | 9.30 | 18.00 | | | PCB128 | 0.55 U | 520 | 4.10 U | 0.90 U | 3.05 U | 0.90 U | | | | | PCB128 | | 1900 | | | | | 2.14 | 3.60 U | | | PCB153 | | | 42.00 | 5.80 | 15.00
| 9.20 | 21.00 | 20.00 | | | PCB153 | 0.56 U | 1500 | 37.00 | 0.40 | 12.00 | 6.70 | 23.00 | 45.00 | | | | 0.55 U | 60.00 U | 4.10 U | 0.90 U | 3.05 U | 0.90 U | 2.70 U | 3.60 U | | | PC8170 | 0.55 U | 400 | 4.10 U | 0.90 U | 3.05 U | 0.90 U | 2.70 U | 3.60 U | | | PC8180 | 7.70 | 330 | 21.00 | 0.90 U | 12.00 | 17.00 | 59.00 | 3.60 U | | | PCB187 | 3.50 | 150 | 13.00 | 13.00 | 9.70 | 16.00 | 40,00 | 29.00 | | | PCB188 | 1.50 | 210 | 4.10 U | 0.90 U | 3.05 U | 5.80 | 11.00 | 20.00 | | | PCB195 | 2.00 | 60.00 U | 4.10 U | 0.90 U | 3.05 U | 4.50 | 5.40 | 3.60 U | | | PCB200 | 0.55 U | 60,00 Ü | 4.10 U | 0.90 U | 3.05 U | 0.90 U | 2.70 U | 3.60 U | | | PCB206 | 5.10 | 60.00 U | 16.00 | 0.90 U | 3.05 U | 30,00 | 31.00 | 15.00 | | | PCB209 | 0.55 U | 60.00 U | 4.10 U | 0.90 U | 3.05 U | 0.90 U | 2.70 U | 3,60 U | | | Total PCBs (Sum of Congeners x 2)* | 63.20 | 41680 | 886 | 92.20 | 392 | 231 | 919 | 750 | 75.17 | | Dioxins ⁴ (ng/kg) | | | | -5.40 | | 431 | 1 -12 | /30 | /3.1/ | | Dioxin-Mammal | T | | | | | | | | | | | 13.50 | 231 | 32.70 | 14.46 | 36.44 | 13,54 | 43.36 | 18.63 | 9.07 | | Dioxin-Fish | 13.23 | 203 | 29.48 | 14.11 | 32.37 | 12.09 | 35.08 | 15.29 | 7.57 | | Oloxin-Bird | 22.14 | 440 | 59.09 | 23.75 | 47.03 | 26.33 | 66.96 | 35.14 | 16.75 | | | DO D-1-0-45 | | d: 'J'=Estimated | | | | | | | DQ = Date Qualifier: "U"=Undetected; "J"=Estimated; "B"=Below CRDL; and "NA"=Not Analyzed. One-half the MDL taken where DQ = "U", ^{1 -} Sum of High Molecular Weight PAHs = Benzo(a)anthracene, Benzo(a)pyrene, Chrysene, Dibenz(a,h)anthracene, Fluoranthene, and Perylene; Perylene not available for Reference ^{2 -} Sum of Low Molecular Weight PAHs = 2-Methylnaphthalane, Acenaphthane, Acenaphthylene, Anthracene, Fluorene, Naphthalene, and Phenanthrene. ^{3 -} Sirm of Congeners x 2 does not include PCB077,104, aixid 154. $^{4 \}times D londo < 2.0,7,8 \; TCDD F quivalent, see Appendix <math display="inline">D/3$. ^{5 -} Heference Station - GM06 (SAIC, 1998). Total PCBs = 16 Congeners x 2. Appendix A-1. Sediment Chemical Analysis Results for the Raymark Phase III Ecological Risk Assessment Investigation. | | C-1-SED-SMP
DQ | C-2-SED-SMP
DQ | C-3-SED-SMP
DQ | D-1-SED-SMP
DQ | D-2-SED-SMP | D-3-SED-SMP | D-4-SED-SMP | D-5-SED-SMP | D-6-SED-SMP | |-------------------------|-------------------|-------------------|-------------------|-------------------|-------------|-------------|-------------|-------------|-------------| | AVS/SEM (µmol/g dry wt) | | | | | | I | | | | | Acid Volatile Sulfide | 11.81 | 16.22 | 0.30 | <0.1 | 4.29 | 1.79 | 13.95 | 2.62 | 5.68 | | Cadmium | 1.00E-03 J | 1.00E-03 J | 2.00E-03 | 1.00E-03 J | 2.00E-03 J | 9.00E-03 | 4.00E-03 | 2.00E-03 | 3.00E-03 | | Copper | 0.05 J | 0.12 J | 0.39 J | 0.06 J | 0.06 J | 0.76 J | 0.57 J | 0.10 J | 0.07 J | | Lead | 0.07 J | 0.15 J | 0.26 J | 0.02 J | 0.05 J | 0.29 J | 0.17 J | 0.13 J | 0.09 J | | Nickel | 0.05 J | 0.09 J | 0.08 J | 0.05 J | 0.08 J | 0.28 J | 0.63 J | 0.37 J | 0.35 J | | SEM-AVS | -9.49 | -10.99 | 4.64 | n/a | -1.36 | 5.23 | -12.48 | -0.32 | -1.57 | | SEWAVS | 0.20 | 0.32 | 16.45 | n/a | 0.68 | 3.92 | 0.11 | 0.88 | 0.72 | | Zinc | 2.14 J | 4.87 J | 4.21 J | 0.55 J | 2.75 J | 5.68 J | 0.10 J | 1.70 J | 3.60 J | | Grain Size (%) | | | | • | • | • | • | | | | Clay | 0.30 | 1.20 | 1.00 | 0.20 | 0.70 | 1 0 | 1.10 | 7 6 | 0.20 | | Sand | 78.60 | 43.70 | 26.90 | 59.40 | 31.20 | 98.30 | 40.70 | 93.20 | 79.00 | | Silt | 21.10 | 55.10 | 72.10 | 40.40 | 68.10 | 1.70 | 58.10 | 6.70 | 20.80 | DQ = Data Qualifier: "U"=Undetected; "J"=Estimated; "B"=Below CRDL; and "NA"=Not Analyzed. One-half the MDL taken where DQ = "U". 1 - Sum of High Molecular Weight PAHs = Benzo(a)anthracene, Benzo(a)pyrene, Chrysene, Dibenz(a,h)enthracene, Fluoranthene, and Perylene; Perylene not available for Reference 2 - Sum of Low Molecular Weight PAHs = 2-Methylnephthalene, Acenaphthene, Acenaphthylene, Anthracene, Fluorene, Naphthalene, and Phenanthrene. 3 - Sum of Congeners x 2 does not include PCB077,104, and 154. 4 - Dioxin = 2,3,7,8 TCDD Equivalent; see Appendix D-3. 5 - Reference Station - GM08 (SAIC, 1998). Total PCBs = 16 Congeners x 2. Appendix A-1. Sediment Chemical Analysis Results for the Raymark Phase III Ecological Risk Assessment Investigation. | | D-6-SED-FD | E-1-SED-SIMP
DO | E-2-SED-SMP | E-3-SED-SMIP
DQ | E-4-SED-SAIP
DO | F-1-SED-SMP | F-2-SED-SMP
DQ | F-3-SED-SMP | Reference ⁵
DO | |-------------------------|------------|--------------------|-------------|--------------------|--------------------|-------------|---------------------|-------------|------------------------------| | mol/g dry wt) اAV\$/SEM | | T | | | | 1 | 1 | · · | 1 | | Acid Volatile Suffide | 12.52 | 22.22 | 16.77 | <0.1 | 13.38 | 124 | 83.45 | 27.01 | 9.40 | | Cadmium | 7.00E-03 | ***** | ***** | ****** | 4.00E-03 | 0.02 | 0.05 | 0.02 | 0.01 | | Copper | 0.17 J | 1.80 J | 2.33 J | 1.05 J | 2.62 J | 0.30 J | 0.11 J | 0.78 J | 0.32 | | Lead | 0.27 J | 1.19 J | 0.48 J | 0.31 J | 0.55 J | 0.68 J | 1.64 J | 1.31 J | 0.41 | | Nickel | 0.54 J | 1.63 J | 0.31 J | 0.29 J | 0.45 J | 0.34 J | 0.79 J | 1.12 J | 0.15 | | SEM-AVS | -2.68 | -2.38 | 0.35 | n/a | -6.25 | -112,11 | -63.73 | -5.78 | -4.87 | | SEMAVS | 0.79 | 0.89 | 1.02 | n/e | 0.53 | 0.10 | 0.24 | 0.79 | 0.48 | | Zinc | 8.85 J | 15.21 J | 14.00 J | 4.91 J | 3.50 J | 10.97 J | 17,13 J | 18.01 J | 3.63 | | Grain Size (%) | | | | | | | · ······ | | Î | | Clay | 0.50 | 1.10 | 1,70 | 0.80 | 2.10 | 0.40 | 2.00 | 1.10 | 0 | | Sand | 41.30 | 7.30 | 5.90 | 40.50 | 4.60 | 80.90 | 18.40 | 56.70 | 78.33 | | Silt | 58.20 | 91.60 | 92.50 | 56.70 | 93.30 | 18.70 | 79.60 | 42.20 | 21.67 | DQ = Data Qualifier: "U"=Undetected; "J"=Estimated; "B"=Below CRDL; and "NA"=Not Analyzed. One-half the MDL taken where DQ = "U", 1 - Sum of High Molecular Weight PAHs = Benzo(a)anthracene, Benzo(a)pyrene, Chrysene, Dibenz(a,h)sinthracene, Fluoranthene, and Perylene; Perylene not available for Reference 2 - Sum of Low Molecular Weight PAHs = 2-Methylnaphthalene, Acenaphthene, Acenaphthylene, Anthracene, Fluorene, Naphthalene, and Phenanthrene. 3 - Sum of Congeners x 2 does not include PCB077,104, and 154. 4 - Dioxin = 2,3,7,8 TCDD Equivalent; see Appendix D-3. 5 - Reference Station - GM06 (SAIC, 1996). Total PCBs = 16 Congeners x 2. # APPENDIX A-2 RESULTS OF POREWATER CHEMICAL ANALYSES: METALS Appendix A-2. Sediment Porewater Analysis Results for the Raymark Phase III Ecological Risk Assessment Investigation. | | | | | | | | | | | | | | | _ | | | | 1 | | | 5 + DIII | | E 4 5141 | 50 | F 2 DW | 00 | E A DW | 200 | E.I.DW | 00 | E-2-PW | no | F-3-PW | DQ. | Reference DO | |----------------|--------|------|--------|------|--------|----------------|--------|------|--------|------|--------|-----|--------|-----|--------|------|--------|------|--------|----------|----------|--------------|----------|-----|--------|-----|---------|----------|----------|-----|-----------|-------|---|------------|--------------| | | C-1-PW | DQ | C-2-PW | DQ | C-3-PW | 00 | D-1-PW | DQ | D-2-PW | DQ | D-3-PW | 00 | D-4-PW | _DQ | D-5-PW | DQ | D-6-PW | DO | D-6-FD | DQ | E-1-PW | DO | E-2-PW | DQ | E-3-PW | וטע | C-4-LAA | <u> </u> | E-1-F-14 | 00 | 1 -2 - 11 | 541 | , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | Reference DQ | | Metals (mg/kg) | Arsenic | 42.9 | T | 12.4 | | 5.0 | U.W | 5.0 | u,w | 5.0 | U.UJ | 5.0 | U.W | 5.0 | U.W | 5.0 | U,UJ | 5.0 | U,W | 5.0 | U,B | 10.5 | - 1 | 29.1 | | 10,3 | | 5.0 | W,U | 5.0 | υw | 5.0 | ບຸເພ | 10.5 | — ∔ | 20.10 | | Cadmium | 0.1 | U.B | 0.1 | U.B | 0.1 | U.B | 0.1 | U.B | 0.1 | U,B | 0.4 | | 0.1 | UB | 0.1 | U.B | 0.1 | U.B | 0.1 | U,B 0.17 | | | | -U,B | | 0,6 | 3.1 | , _B | | | | -,6 | | | 2.5 | ,0 | | | 1.0 | | 5.1 | | 2.9 | | 13.7 | | 1.0 | | 3.4 | | 1.5 | | 3.5 | | 0.6 | - 1 | 1.69 | | Chromium | 3.8 | | 9.3 | | 2.0 | | 0.4 | U,B | 1.5 | | 0.4 | U,B | 2.5 | | 1.4 | | 1.0 | | 3.1 | | | | | | | | 2.9 | | 1.3 | | 5.0 | | 1.3 | 12 | 55.00 | | Copper | 1.3 | U I | 1.3 | U | 1.3 | U | 1.3 | U | 2.9 | | 11.2 | | 1.3 | υ | 1.3 | U | 1.3 | U | 1.3 | <u>U</u> | 20.8 | | 15.4 | | 5.1 | | 2.9 | | | | 3,8 | | 1.0 | | | | Lead | 1.45 | U.W | 1.45 | U.W | 3.3 | J | 3.2 | Ĵ | 1.45 | LU | 3.7 | J | 1.45 | U,W | 1.45 | ບ,ເນ | 1.45 | ບ,ເນ | 1.45 | υw | 1.45 | U,W | 34.6 | | 1.45 | U,W | 3.7 | J | 1.45 | U,W | 1,45 | U,U | 1.45 | U,UJ | 1.56 | | | NA. | | NA | | NA | | NA | | NA. | | NA. | | NA | | NA. | | NA | | NA | | NA | - 1 | NA | | NA. | | NA | | Mercury | 130 | | 130 | | 14/ | | - 110 | | | | | | | | | U,B | | U.B | 4 | U,B | | U.B | 4 | U,B | 8.3 | | 9.9 | | 4 | U.B | 4 | U.B | 4 | U,B | 32.00 | | Nickel | 1_4 | U,B | 4 | U,B | _ 4 | U,B | 4 | U,B | 4 | U,B | 4 | U,B | | U,B | 4 | | _ | | | _ | | - | | | - | | | U.W | | | 0.3 | U.W | 0.3 | U.UJ | 1.00E-03 | | Silver | 0.3 | U,W | 0.3 | _u,w | 0.3 | ບ,ເນ | 0.3 | U,UJ | 0.3 | บ,เม | 0.3 | U,W 0,3 | w,u | | U,W | 0.3 | U,W | | 0,001 | - 0.3 | 0,00 | | | Zinc | 1.5 | U.B | 5.5 | J | 12.7 | J | 17.9 | J | 1.5 | U,B | 32.7 | J | 9.2 | J | 6.8 | J | 4.1 | J | 16.1 | J | 1.5 | U,B | 1.5 | U,B | 7.9 | J | 11.6 | J | 9.4 | J | 28.8 | | 4.5 | J | 420 | U = Concentrations in µg/L below the Limit of Quantitative Detection (LQD); value reported = 1/2 LQD. B = Below the Contract Required Detection Limit. $[\]ensuremath{\text{UJ}}$ = Uncertainty associated with the reported detection limits. J = Estimated. ^{1 -} Reference Station - GM08 (SAIC, 1998). APPENDIX A-3 RESULTS OF TISSUE CHEMICAL ANALYSES: ORGANICS, METALS, AND LIPIDS Appendix A-3. Concentrations of CoCs in Ribbed Mussels collected for the Raymark Phase III Ecological Risk Assessment Investigation. | | C-1.TISS-SMP
DO | C-2-TISS-SIMP
DQ | C-3-TISS-SMP
DQ | D-1-TISS-SMP | D-2-TISS-SMP | D-3-TISS-SMP | D-4-TISS-SMP
DQ | D-6-TISS-SMP | HB-9-TISS-SMP |
--|--------------------|---------------------|--------------------|--------------|--------------|--------------|--------------------|--------------|---------------| | Lipid Content | 2.00 | 1.40 | 2.80 | 3.90 | 4.00 | 2.00 | 3.10 | 2.60 | 2.20 | | Metals (mg/kg dw) | 1 | | 1_2.00 | 1 0.50 | 1 | 2.00 | 0.10 | 2.00 | 2.20 | | Arsenic | 2.00 J | 2.20 J | 2.10 J | 1.60 J | 2.60 J | 3.60 J | 3.20 J | 2.70 J | 2.30 J | | Cadmium | 0.44 J | 0.67 J | 0.51 J | 0.74 J | 0.49 J | 0.99 J | 0.57 J | 1.10 J | 0.56 J | | Chromium | 1.20 | 1.70 | 2.30 | 1.00 | 0.85 | 1.00 | 1.80 | 2.80 | 1.20 | | Copper | 24.20 | 42.60 | 37.10 | 16.70 | 19.90 | 18.10 | 20.50 | 29.80 | 26.30 | | Lead | 1,10 | 1.60 | 2.20 | 0.95 | 0.69 | 0.93 | 1.00 | 1.60 | 1.00 | | Mercury | 0.10 | 0.11 | 0.10 | 0.09 | 0.09 | 0.10 | 0.10 | 0.14 | 0.10 | | Nickel | 0.84 | 0.73 | 0.62 | 0.50 | 0.52 | 0.57 | 0.69 | 0.75 | 0.51 | | Silver | 1.20 | 1.90 | 1,10 | 0.65 | 1.00 | 0.91 | 1.10 | 0.84 | 1.10 | | Zinc | 68.20 | 60.50 | 58.20 | 59.10 | 58.40 | 68.80 | 66.50 | 70.00 | 62.90 | | Polyarometic Hydrocarbons (PAHs) (µg/kg dw) | | | | | | 1 | 1 00.00 | 1 | 1 02:00 | | 1,6,7-Trimethylnaphthalene | 5.50 U | 5.50 U | 5.50 U | 5.00 U | 5.00 U | 5.50 U | 6.50 U | 6.00 U | 5.50 U | | 1-Methylnaphthalene | 90.00 | 97.00 | 110 | 97.00 | 140 | 94.00 | 160 | 93.00 | 70.00 | | 1-Methylphenanthrene | 5.50 U | 5.50 U | 5.50 U | 5.00 U | 5.00 U | 5.50 U | 6.50 U | 6.00 U | 5.50 U | | 2,6-Dimethylnaphthalene | 5.50 U | 5.50 U | 5.50 U | 5.00 U | 20.00 | 5.50 U | 6.50 U | 6.00 U | 5.50 U | | 2-Methylnaphthalene | 91.00 | 85.00 | 110 | 130 | 160 | 100.00 | 140 | 110 | 80.00 | | Acenaphthene | 23.00 | 15.00 | 17.00 | 25.00 | 24.00 | 19.00 | 29.00 | 16.00 | 12.00 | | Acenaphthylene | 5.50 U | 5.50 U | 12.00 | 14.00 | 15.00 | 5.50 U | 14.00 | 6.00 U | 5.50 U | | Anthracene | 5.50 U | 5.50 U | 5.50 U | 12.00 | 12.00 | 5.50 U | 6.50 U | 6.00 U | 5.50 U | | Benzo(a)anthracene | 15.00 | 13.00 | 25.00 | 26.00 | 32.00 | 14.00 | 22.00 | 22.00 | 17.00 | | Benzo(a)pyrene | 5.50 U | 5.50 U | 13.00 | 5.00 U | 5.00 U | 5.50 U | 6.50 U | 6.00 U | 5.50 U | | Benzo(b)fluoranthene | 5.50 U | 5.50 U | 17.00 | 14.00 | 21.00 | 5.50 U | 6.50 U | 6.00 U | 5.50 U | | Benzo(e)pyrane | 5.50 U | 5.50 U | 15.00 | 24.00 | 27.00 | 5.50 U | 20.00 | 18.00 | 17.00 | | Benzo(g,h,i)perylene | 5.50 U | 5.50 U | 19.00 | 5.00 U | 15.00 | 5.50 U | 6.50 U | 6.00 U | 5.50 U | | Benzo(k)fluoranthene | 5.50 U | 5.50 U | 17.00 | 11.00 | 18.00 | 5.50 U | 6.50 U | 6.00 U | 5.50 U | | Biphenyl | 5.50 U | 5.50 U | 5.50 U | 5.00 U | 5.00 U | 5.50 U | 6.50 U | 6.00 U | 5.50 U | | Chrysene | 12.00 | 5.50 U | 22.00 | 20.00 | 28.00 | 5.50 U | 15.00 | 15.00 | 16.00 | | Dibenz(a,h)anthracene | 5.50 U | 5.50 U | 12.00 | 5.00 U | 5.00 U | 5.50 U | 6.50 U | 6.00 U | 5.50 U | | Fluoranthene | 33.00 | 25.00 | 44.00 | 74.00 | 71.00 | 32.00 | 54.00 | 41.00 | 37.00 | | Fluorene | 5.50 U | 5.50 U | 13.00 | 16.00 | 18.00 | 11.00 | 17.00 | 6.00 U | 5.50 U | | Sum PAHs (6 High Molecular Weight) 1 | 76.50 | 60.00 | 122 | 135 | 152 | 68.00 | 111 | 96.00 | 66.50 | | Indeno(1,2,3-cd)pyrene | 5.50 U | 5.50 U | 16.00 | 5.00 U | 5.00 U | _ 5.50 U | 6.50 U | 6.00 U | 5.50 U | | Sum PAHs (7 Low Molecular Weight) ² | 405 | 383 | 472 | 482 | 572 | 406 | 577 | 388 | 308 | | Naphthalene | 210 | 210 | 230 | 200 | 250 | 190 | 260 | 180 | 140 | | Perylene | 5.50 U | 5.50 U | 5.50 U | 5.00 U | 11.00 | 5.50 U | 6.50 U | 6.00 U | 5.50 U | | Phenanthrene | 64.00 | 56.00 | 84.00 | 85.00 | 93.00 | 75.00 | 110 | 64.00 | 59.00 | | yrene | 63.00 | 57.00 | 83.00 | 150 | 140 | 73.00 | 100.00 | 100.00 | 68.00 | | Sum PAHs OQ = Data Qualifier: "U"=Undetected: ".!"=Estimated: " | 684 | 646 | 892 | 943 | 1125 | 691 | 1019 | 743 | 593 | DQ = Data Qualifier: "U"=Undetected; "J"=Estimated; "B"=Below CRDL; and "NA"=Not Analyzed. Tissue sample analyzed = ribbed mussels. One-half the MDL taken where DQ = "U". 1 - Sum of High Molecular Weight PAHs = Benzo(a)anthracene, Benzo(a)pyrene, Chrysene, Dibenz(a,h)anthracene, Fluoranthene, and Perylene. 2 - Sum of Low Molecular Weight PAHs = 2-Methylnaphthalene, Acenaphthene, Acenaphthylene, Anthracene, Fluorene, Naphthalene, and Phenanthrene. 3 - Sum of Congeners x 2 does not include PCB077,104, and 154. Appendix A-3. Concentrations of CoCs in Ribbed Mussels collected for the Raymark Phase III Ecological Risk Assessment Investigation. | | C-1-TISS-SMP | 8 | C-2-TISS-SMP | g | C-3-TISS-SMP | | D-1-TISS-SMP | D-2-TISS-SMP
DQ | D-3-TISS-SMP | g | D-4-TISS-SMP | D-6-TISS-SMP | 8 | HB-9-TISS-SMP | 00 | |---|--------------|---------|--------------|--------------|------------------|-----|-----------------|--------------------|--------------|-----|-----------------|--------------|----------|---------------|------------| | Organochlorine Pesticides (μg/kg dw) | | | | - | | | | | | | | | | | | | Aldrin | 2.30 | U | 2.20 | υĪ | 2.15 U | Т | 1.95 U | 2.00 U | 2.15 | U | 2.60 U | 2.50 | Ų | 2.10 | C | | Alpha-BHC | 2.30 | Ü | | Ū | 2.15 U | T | 1.95 U | 2.00 U | 2.15 | Ü | 2.60 U | 2.50 | U | 2.10 | U | | Alpha-Chlordane | 2.30 | Ū | | υŢ | 2.15 U | 1 | 1.95 U | 2.00 U | 2.15 | U | 2.60 U | 2.50 | U | 2.10 | U | | Beta-BHC | 2.30 | U | 2.20 | υŢ | 2.15 U | Π. | 1.95 U | 2.00 U | 2.15 | U | 2.60 U | 2.50 | U | 2.10 | U | | Delta-BHC | 2.30 | U | 2.20 | U | 2.15 U | | 1.95 U | 2.00 U | 2.15 | U | 2.60 U | 2.50 | U | 2.10 | U | | Dieldrin | 2.30 | 5 | | Ü | 2.15 U | | 1.95 U | 2.00 U | 2.15 | U | 2.60 U | 2.50 | U | 2.10 | U | | Endosulfan I | 2.30 | C | 2.20 | υŢ | 2.15 U | | 1.95 U | 2.00 U | 2.15 | U | 2.60 U | 2.50 | ᆜ | 2.10 | U | | Endosultan II | 2.30 | c | 2.20 | Ü | 2.15 L | | 1.95 U | 2.00 U | 2.15 | U | 2.80 U | 2.50 | U | 2.10 | U | | Endosulfan Sulfate | 2.30 | U | | U | 2.15 U | | 1.95 U | 2.00 U | 2.15 | U | 2.60 U | | Ÿ | 2.10 | U | | Endrin | 2.30 | U | 2.20 | U | 2.15 L | | 1.95 U | 2.00 U | 2.15 | U | 2.60 U | | Ų, | 2.10 | NA | | Endrin Aldehyde | | NA | | NA | | _ | NA. | NA | | NA | N | | NA. | 240 | U | | Gamma-BHC(Lindane) | 2.30 | U | 2.20 | U | 2.15 L | | 1.95 U | 2.00 U | 2.15 | Ų | 2.60 U | | U | 2.10 | Ü | | Gamma-Chlordane | 2.30 | U | 2.20 | U | 2.15 L | _ | 1.95 U | 2.00 U | 2.15 | U | 2.60 U | | ü | 2,10 | Ü | | Heptachlor | 2.30 | Ü | 2.20 | 빞 | 2.15 | | | | 2.15 | U | | | Ü | 2.10 | Ü | | Heptachlor Epoxide | 2.30 | U | 2.20 | Ÿ. | 2.15 L | 닒 | 1.95 UJ | 2.00 UJ | 2.15 | ··· | 2.60 U | | 5 | 2.10 | Ü | | Hexachlorobenzene | 2.30 | UJ | 2.20 | 삤 | | _ | 4.90 U | 5.00 U | 5.50 | U | 6.50 U | | Ü | 5.00 | U | | Methoxychlor | 5.50 | <u></u> | 5.50
2.20 | 밝 | 5.50 L
2.15 L | _ | 1.95 U | 2.00 U | 2.15 | Ü | 2.60 U | | ÷ | 2.10 | ŭ | | Mirex | 2.30 | U | 2.20 | 히 | 2.15 L | | 1.95 U | 2.00 U | 2.15 | Ü | 2.60 U | | Ü | 2.10 | Ü | | o,p'-DDD | 2.30 | Ü | 2.20 | 히 | 2.15 L | _ | 1.95 U | 2.00 U | 2.15 | Ŭ | 2.60 U | | Ū | 2.10 | Ü | | o,p'-DDE | 2.30 | Ť | 2.20 | 히 | 2.15 L | | 1.95 U | 2.00 U | 2.15 | Ū | 2.60 U | | Ù | 2.10 | Ū | | o.p'-DOT
p.p'-DOD | 2.30 | Ü | 2.20 | ΰİ | 6.80 | + | 16.00 | 8.40 | 2.15 | Ū | 2.60 U | | U | 2.10 | U | | p,p'-DDE | 2.30 | Ü | 2.20 | ŭ | 2.15 L | , 1 | 8.40 | 7.10 | 2.15 | Ū | 2.60 U | | C | 2.10 | Ü | | p,p'-DDT | 2.30 | Ū | 2.20 | Ū | 2.15 L | | 1.95 U | 2.00 U | 2.15 | Ų | 2.60 U | 2.50 | c | 2.10 | U | | Toxaphene | 14.50 | Ü | 13.50 | υl | 13.50 L | | 12.00 U | 12.50 U | 13.50 | U | 16.00 L | 15.50 | c | 13.00 | U | | Polychiorinated Biphenyls (PCBs) (μg/kg dw) | | | | | | | | | | | | | | | | | PCB008 | 2.30 | U | 2.20 | v | 2.15 L | Л | 1.95 U | 2.00 U | 2.15 | U | 2.80 U | | U | 2.10 | U | | PCB018 | 2.30 | U | 2.20 | U | 2.15 L | ı | 1.95 U | 2.00 U | 2.15 | U | 2.80 U | | UJ | 2.10 | W | | PCB028 | 2.30 | Ü | 2.20 | ט | 2.15 L | _ | 1.95 U | 2.00 U | 2.15 | U | 2.60 U | | U | 2,10 | U | | PCB029 | 2.30 | U | 2.20 | U | 2.15 L | _ | 1.95 U | 2.00 U | 2.15 | U | 2.60 U | | U | 2.10 | Ü | | PCB044 | 2.30 | U | 2.20 | U | 2.15 L | | 16.00 | 6.30 | 2.15 | U | 8.90 | 2.50 | U | 2.10 | U | | PCB050 | 2.30 | U | 2.20 | U | 2.15 | _ | 1.95 U | 2.00 U | 2.15 | U | 2.60 U | | U | 2.10 | U | | PCB052 | 2.30 | U | 2.20 | V | 2.15 | _ | 6.80 | 5.00 | 2.15 | U | 7.70 | 2.50 | U | 2.10 | U | | PCB086 | 2.30 | U | 2.20 | U | 2.15 | _ | 6.80 | 9.20 | 2.15 | U | 2.60 U | | U | 2.10 | <u>u</u> | | PCB077 | 2.30 | U | 2.20 | U | 2.15 | _ | 1.95 U | 2.00 U | 2.15 | U | 2.60 U | | U | 2.10 | U | | PCB067 | 2.30 | U | 2.20 | U | | 4 | 1.95 U | 2.00 U | 2.15 | U | 2.60 U | 9.50 | U | 2.10
4.50 | <u>, v</u> | | PCB101 | 2,30 | U | 2.20 | 빞 | 10.00 | .+ | 15.00
1.95 U | 16,00
2,00 U | 6.00
2.15 | U | 11.00
2.60 U | | U | 2.10 | U | | PCB104 | 2.30 | Ü | 2.20 | Ÿ | 2.15 | _ | | | | ÷ | 2.60 U | | Ü | 2.10 | ᇴ | | PCB105 | 2.30 | U | 2.20 | Ü | 2.15 U | 4 | 4.50
1.95 U | 5.90
4.90 | 2.15
2.15 | Ü | 6.70 | 6.00 | <u> </u> | 2.10 | Ť | | PCB118 | 2.30 | U | 2.20 | ö | | H | 1.95 U | 2.00 U | 2.15 | Ü | 2.60 U | | Ų | 2.10 | Ť | | PCB128
PCB128 | 2.30 | ö | 2.20 | ü | 2.15 | | 1.95 U | 2.00 U | 2.15 | Ť | 2.60 U | | Ŭ | 2.10 | Ť | | PC8128 | 2.30 | Ü | 2.20 | ŭ | | Ħ | 12.00 | 10.00 | 2.15 | Ť | 8.80 | 7.20 | Ť | 6.00 | | | PCB138 | 2.30 | Ť | 2.20 | ül | 7.80 | 4 | 13.00 | 21.00 | 9.00 | | 15.00 | 14.00 | | 7.40 | | | PCB154 | 2.30 | Ť | 2.20 | ŭ | 2.15 L | ᆏ | 1.95 U | 2.00 U | 2.15 | Ü | 2.60 U | | Ū | 2.10 | U | | PCB170 | 2.30 | Ü | 2.20 | ŭ | | H | 1.95 U | 2.00 U | 2.15 | ŭ | 2.60 L | | Ü | 2.10 | Ť | | PCB180 | 2.30 | Ü | 2.20 | ŭ | | Ħ | 1.95 U | 2.00 U | 2.15 | Ť | 2.60 | | Ū | 2.10 | Ť | | PCB187 | 2.30 | Ü | 2.20 | ŭ | 9.40 | 4 | 16.00 | 11.00 | 4.50 | | 11.00 | 8.00 | | 6.10 | | | PCB188 | 2.30 | ŭ | 2.20 | ŭ | | 亣 | 1.95 U | 2.00 U | 2.15 | Ü | 2.60 U | | U | 4.40 | | | PC8195 | 2.30 | Ü | 2.20 | ŭ | | Ħ | 1.95 U | 2.00 U | 2.15 | Ū | 2.60 L | | Ü | 2.10 | U | | PCB200 | 2.30 | ŭ | 2.20 | ŭ | | 7 | 1.95 U | 2.00 U | 2.15 | Ũ | 2.60 L | | Ü | 2.10 |
U | | | | | | Ŭ | | ī | 1.95 U | 2.00 U | 2.15 | Ū | 2.60 L | | U | 2.10 | Ū | | PCR206 | 2.30 | U | 1 2.20 | | | , , | 1.80 | | | | | £.50 | | | | | PCB206
PCB209 | 2.30 | U | 2.20 | ᆔ | | H | 1.95 U | 2.00 U | 2.15 | Ü | 2.60 L | | Ť | 2.10 | Ü | DQ = Data Qualifier: "U"=Undetected; "J"=Estimated; "B"=Below CRDL; and "NA"=Not Analyzed. Tissue sample analyzed = ribbed mussels. One-half the MDL taken where DQ = "U". ^{1 -} Sum of High Molecular Weight PAHs = Benzo(a)anthracane, Benzo(a)pyrene, Chrysene, Dibenz(a,h)anthracene, Fluoranthene, and Perylene. 2 - Sum of Low Molecular Weight PAHs = 2-Methylnaphthalene, Acenaphthene, Acenaphthylene, Anthracene, Fluorene, Naphthalene, and Phenanthrene. 3 - Sum of Congeners x 2 does not include PCB077,104, and 154. APPENDIX B EFFECTS DATA APPENDIX B-1 TOXICOLOGICAL EVALUATION OF SEVENTEEN SEDIMENTS: RAYMARK 1999 # TOXICOLOGICAL EVALUATION OF SEVENTEEN SEDIMENTS: Raymark 1999 ## Prepared For: Science Applications International Corporation 221 Third Street Admiral's Gate Newport, Rhode Island 02840 Prepared By: EnviroSystems, Incorporated 1 Lafayette Road Hampton, New Hampshire 03842 May 5, 1999 Reference SAIC7814-99-04 ## TOXICOLOGICAL EVALUATION #### OF SEVENTEEN SEDIMENTS: ### Raymark 1999 #### 1.0 SAMPLE RECEIPT AND STORAGE Seventeen (17) sediments were collected by Science Applications International Corporation (SAIC), Newport, Rhode Island on April 16, 1999. Each sample was placed in a one gallon polyethylene jug and shipped on ice to EnviroSystems, Incorporated (ESI), Hampton, New Hampshire. Samples were received at ESI on April 20, 1999. Control sediment for the amphipod assay was provided by the organism supplier. At ESI, samples were given identification numbers and refrigerated at 2-4 °C until test initiation. #### 2.0 TEST ORGANISMS The 10 day acute solid phase assay was conducted using *Ampelisca* abdita, obtained from Eastern Aquatic Biosupply of Kingstown, Rhode Island. Prior to use, test organisms were held for two days under conditions of temperature, salinity, and photoperiod similar to those to be used in the assay. *A. abdita* used in the assay were adults between 2 and 3 mm in length. #### 3.0 TEST METHODOLOGY #### 3.1 April 21, 1999 (Day -2) Test and control sediments were all sieved (1 mm) to remove macroinvertebrates, large shell hash, and rocks prior to use in the assays. Each test sediments consisted on five replicates. Each replicate contained approximately 175 mL of sediment and 725 mL of natural sea water in a 1 liter beaker. The overlying water in each test vessel was gently aerated and test chambers were allowed to stabilize overnight. Client: Science Applications International Corporation. Date: April 23, 1999 Project: Raymark 1999. Study: 7814. ## 3.2 April 22, 1999 (Day -1) A pore water ammonia sample was taken and measured for one replicate of each test sediment. As the level of un-ionized ammonia in the pore water was ≤0.2 mg/L (half of the acute LC-50 value of 0.40 mg/L for the amphipod, *Ampelisca abdita*) the sediments did not need to be "washed" to reduce total ammonia levels. The concentration of un-ionized ammonia was determined based on ammonia concentrations, temperature, and pH using tables provided by the U.S. EPA (1979). (Salinity was not factored into the determination of percent un-ionized ammonia. Information provided in the U.S. EPA document indicated that the effect of salinity on percent un-ionized ammonia in the sample was small.) ## 3.3 April 23, 1999 (Day 0) Pore water ammonia samples were taken and measured. Dissolved oxygen, temperature, pH, and salinity in aliquots of overlying water from each test vessel were recorded. It was noted that the pH of the overlying water for sediment "E-4-SED-SMP," ranged from 3.71 SU to 4.41 SU. To minimize the impact low pH could have on organism survival, the overlying water in these test replicates was decanted, replenished, and allowed to settle for a minimum of four hours. A total of 20 amphipods were indiscriminately selected from the pool of organisms and randomly added to each test and control sediment replicate. Five true replicates were used for each treatment. Water temperature was $20\pm2^{\circ}$ C, and the salinity regime was established at 28 $\pm2\%$. The photoperiod was set at 24 hours light and 0 hours dark. ## 3.4 April 24, 199 - May 2, 1999 (Days 1-9) Temperature, salinity, pH, and dissolved oxygen in each test replicate were recorded daily. In cases where salinity exceed 30 ppt overnight, salinity was corrected to 28±2 ppt using spring water. Overlying water lost to evaporation was replenished as needed. Samples were not renewed during the ten day exposure period. On Day 2, the pH values of overlying water for the E-4-SED-SMP sediment ranged from 5.04 to 6.84 SU. In this case, the overlying water was decanted and replaced taking care not to disturb the test organisms. Client: Science Applications International Corporation. Date: April 23, 1999 Project: Raymark 1999. Study: 7814. ## 3.5 May 3, 1999 (Day 10) Temperature, salinity, pH, and dissolved oxygen in each test replicate were recorded. The test sediment from each replicate was sifted using a 750 μ sieve, organisms were recovered, and survival was recorded. #### 4.0 REFERENCE TOXICANT EVALUATION As part of the laboratory quality control program, reference toxicant evaluations are conducted on a regular basis for each test species. These results provide relative health and response data while allowing for comparison with historic data sets. A reference toxicant assay was conducted on April 27, 1999 using cadmium chloride. The assay resulted in a 96 hour LC-50 value of 0.1 mg/L Cadmium (Probit Analysis). This value was within one standard deviation of the historic mean for the species. #### 5.0 LITERATURE CITED U.S. EPA 1979. Aqueous Ammonia Equilibrium - Tabulation of Percent Unionized Ammonia. EPA-600/3-79/091. 437 pages Client: Science Applications International Corporation. Date: April 23, 1999 Project: Raymark 1999. Study: 7814. CLIENT: SAIC STUDY: 7814 PROJECT: RAYMARK 1999 PARAMETER: Ampelisa abdita 10 Day Chronic Assay Survival | | | | SURVI | /AL | | | |-------------|-----|------|--------|------------|------|------| | | | | Replic | ate | | | | SITE | Α | В | c · | D | E | MEAN | | LAB CONTROL | 90% | 100% | 90% | 80% | 100% | 92% | | C-1-SED-SMP | 65% | 65% | 45% | 25% | 45% | 49% | | C-2-SED-SMP | 70% | 60% | 75% | 15% | 25% | 49% | | C-3-SED-SMP | 5% | 15% | 10% | 0% | 0% | 6% | | D-1-SED-SMP | 85% | 90% | 85% | 45% | 60% | 73% | | D-2-SED-SMP | 75% | 80% | 70% | 25% | 25% | 55% | | D-3-SED-SMP | 50% | 60% | 50% | 35% | 35% | 46% | | D-4-SED-SMP | 70% | 80% | 60% | 55% | 20% | 57% | | D-5-SED-SMP | 60% | 85% | 50% | 60% | 60% | 63% | | D-6-SED-SMP | 0% | 15% | 0% · | 0% | 0% | 3% | | D-6-SED-FD | 0% | 0% | 0% | 0% | 0% | 0% | | E-1-SED-SMP | 55% | 70% | 75% | 45% | 70% | 63% | | E-2-SED-SMP | 60% | 80% | 55% | 55% | 40% | 58% | | E-3-SED-SMP | 80% | 95% | 55% | 70% | 40% | 68% | | E-4-SED-SMP | 40% | 50% | 65% | 45% | 25% | 45% | | F-1-SED-SMP | 45% | 50% | 65% | 70% | 45% | 55% | | F-2-SED-SMP | 85% | 60% | 75% | 80% | 80% | 76% | | F-3-SED-SMP | 70% | 60% | 80% | 65% | 50% | 65% | ### COMMMENTS: Survival in Replicate "E" from the laboratory control sediment is based on recovery of 10 organisms from an original 10 added to the test vessel. SAIC STUDY: 7814 PROJECT: PARAMETER: Ammonia Data RAYMARK 1999 ## Ammonia Concentration, mg/L ## Exposure (Day) | | L | Aposuic | (Day) | | |-------------|----------|---------|-------|-------| | SITE | 1 | 0 | 5 | 10 | | LAB CONTROL | 0.40 | 0.81 | 0.70 | <0.05 | | C-1-SED-SMP | 2.92 | 2.87 | 4.30 | 2.58 | | C-2-SED-SMP | 1.93 | 2.42 | 3.52 | 0.44 | | C-3-SED-SMP | 0.72 | 1.02 | 1.40 | <0.05 | | D-1-SED-SMP | 0.08 | 0.06 | 0.59 | 0.45 | | D-2-SED-SMP | 1.70 | 0.94 | 2.51 | 0.11 | | D-3-SED-SMP | 1.61 | 3.28 | 1.74 | <0.05 | | D-4-SED-SMP | 1.35 | 1.12 | 5.88 | 2.00 | | D-5-SED-SMP | 4.01 | <0.05 | 2.32 | <0.05 | | D-6-SED-SMP | 1.50 | 1.82 | 3.03 | <0.05 | | D-6-SED-FD | 1.71 | 1.89 | 4.36 | 1.43 | | E-1-SED-SMP | 2.68 | 1.41 | <0.05 | 2.66 | | E-2-SED-SMP | 4.91 | 3.90 | <0.05 | 2.80 | | E-3-SED-SMP | 4.67 | 2.78 | <0.05 | 3.28 | | E-4-SED-SMP | 2.57 | 2.52 | 2.04 | 2.00 | | F-1-SED-SMP | 3.45 | 4.71 | 3.81 | 3.82 | | F-2-SED-SMP | 5.24 | 3.07 | 4.08 | 5.80 | | F-3-SED-SMP | 4.22 | 4.28 | 4.87 | 5.32 | | | | | | | #### COMMMENTS: Ammonia on Days -1 and 0 were measured on aliquots of pore water. Ammonia on Days 5 and 10 were measured on aliquots of the overlying water. SAIC STUDY NUMBER: 7814 PROJECT: PARAMETER: RAYMARK 1999 **Water Quality Data** ## CONTROL: | Day | | Repli | Replicate A Replicate B | | | | | | | Repli | cate C | | | Replic | ate D | | | Replica | ate E | | |-----|------|-------|-------------------------|-----|------|-----|------|-----|------|-------|--------|-----|------|--------|-------|-----|------|---------|-------|-----| | Day | Temp | • | ρΗ | Sal | Temp | • | | Sal | Temp | D.Ö. | рH | Sal | Temp | D.O. | pН | Sal | Temp | D.O. | рН | Sal | | 0 | 22 | 6.6 | • • | 30 | 22 | | · | | | 6.9 | 7.96 | 30 | 22 | 6.9 | 7.95 | 30 | 22 | 6.9 | 7.95 | 30 | | 1 | 22 | 6.4 | | 32 | 22 | 6.7 | | | | 6.8 | 7.86 | 32 | 22 | 6.8 | 7.86 | 32 | 22 | 6.8 | 7.77 | 32 | | 2 | 22 | 7.2 | | | 22 | | 7.94 | | | 7.1 | 7.98 | 30 | 22 | 7.0 | 7.98 | 30 | 22 | 6.9 | 7.95 | 30 | | 2 | 22 | 7.5 | 7.98 | | 22 | | | | | 7.6 | 7.97 | 29 | 22 | 7.5 | 7.94 | 28 | 22 | 7.6 | 7.95 | 29 | | 4 | 22 | 7.0 | 7.87 | 31 | 22 | 6.8 | | | _ | 6.8 | 7.90 | 30 | 22 | 6.8 | 7.83 | 31 | 22 | 6.7 | 7.88 | 31 | | 5 | 22 | 7.0 | | 30 | | | | | 22 | 6.8 | 7.99 | 30 | 22 | 6.7 | 8.03 | 30 | 22 | 6.8 | 8.09 | 30 | | 6 | 22 | 7.1 | 7.98 | 30 | | | | | 22 | 7.1 | 7.96 | 30 | 22 | 7.1 | 7.95 | 30 | 22 | 7.1 | 7.96 | 30 | | 7 | 22 | 7.1 | 7.87 | 30 | 22 | 7.1 | | | | 7.1 | 7.86 | 30 | 22 | 7.1 | 7.86 | 30 | 22 | 7.1 | 7.91 | 30 | | 8 | 21 | 7.2 | 7.90 | | 21 | 7.2 | 6.92 |
 | 7.2 | 6.87 | 28 | 21 | 7.2 | 7.08 | 29 | 21 | 7.1 | 7.96 | 31 | | 9 | 21 | 5.9 | | 30 | 21 | 5.9 | 8.06 | 30 | 21 | 6.1 | 8.06 | 29 | 21 | 6.1 | 8.07 | 28 | 21 | 6.3 | 8.07 | 29 | | 10 | 21 | 6.3 | 8.18 | 30 | 21 | 6.4 | 8.19 | 30 | 21 | 6.4 | 8,17 | 30 | 21 | 6.4 | 8.17 | 30 | 21 | 6.3 | 8.17 | 30 | ## C-1-SED-SMP | Day | | Replicate A Replicate B | | | | | | | | Repli | cate C | | | Replic | ate D | | | Replica | ate E | | |-----|------|-------------------------|------|-----|------|-----|------|-----|------|-------|--------|-----|------|--------|-------|-----|------|---------|-------|-----| | Day | Temp | D.O. | | Sal | Temp | • | | Sal | Temp | D.Ò. | pН | Sal | Temp | D.O. | рΗ | Sal | Temp | D.O. | рΗ | Sal | | 0 | 22 | 6.8 | • | 29 | 22 | | 8.01 | 29 | 22 | 6.8 | 7.99 | 29 | 22 | 6.7 | 8.00 | 29 | 22 | 6.7 | 8.02 | 29 | | 1 | 22 | 6.6 | 7.99 | 31 | 22 | 6.4 | 8.01 | 31 | 22 | 6.4 | 8.01 | 31 | 22 | 6.4 | 8.00 | 31 | 22 | 6.3 | 8.01 | 31 | | 2 | 22 | 6.8 | | 30 | 22 | 7.0 | 8.10 | 29 | 22 | 6.9 | 8.10 | 29 | 22 | 6.9 | 8.10 | 28 | 22 | 6.9 | 8.09 | 28 | | 3 | 22 | 7.4 | 8.12 | 29 | 22 | | 8.12 | | 22 | 7.4 | 8.12 | 29 | 22 | 7.3 | 8.11 | 27 | 22 | 7.4 | 8.10 | 29 | | 4 | 22 | 6.8 | | 31 | 22 | 6.9 | 8.16 | 31 | 22 | 6.6 | 8.15 | 30 | 22 | 6.8 | 8.14 | 31 | 22 | 6.7 | 8.15 | 30 | | 5 | 22 | 6.8 | 8.37 | 30 | 22 | 6.8 | 8.37 | 30 | 22 | 6.7 | 8.30 | 30 | 22 | 6.7 | 8.35 | 30 | 22 | 6.7 | 8.33 | 30 | | 6 | 22 | 6.9 | 8.31 | 30 | 22 | 7.1 | 8.32 | 30 | 22 | 7.1 | 8.31 | 30 | 22 | 6.5 | 8.18 | 30 | 22 | 6.9 | 8.28 | 30 | | 7 | 22 | 7.0 | 8.18 | 30 | 22 | 7.1 | 8.29 | 30 | 22 | 7.1 | 8.28 | 30 | 22 | 6.9 | 8.25 | 29 | 22 | 6.9 | 8.25 | 30 | | 8 | 21 | 7.1 | 8.06 | 28 | 21 | 7.0 | 7.32 | 28 | 21 | 7.3 | 8.30 | 29 | 21 | 7.2 | 8.32 | 30 | 21 | 7.1 | 8.34 | 30 | | 9 | 21 | 6.3 | 8.41 | 28 | 21 | 6.2 | 8.42 | 30 | 21 | 6.3 | 8.42 | 29 | 21 | 6.1 | 8.44 | 29 | 21 | 6.3 | | | | 10 | 21 | 6.3 | 8.48 | 29 | 21 | 6.1 | 8.46 | 29 | 21 | 6.0 | 8.48 | 29 | 21 | 6.2 | 8.47 | 29 | 21 | 6.1 | 8.47 | 30 | SAIC STUDY NUMBER: 7814 PROJECT: RAYMARK 1999 PARAMETER: 10 **Water Quality Data** | C-2-SED-SMP | | | | | _ | | | | | Donlid | cate C | | | Replic | ate D | | | Replica | ate E | | |---|------------|--------|--------|------|------|-----|--------|-----|------|------------|------------|----------|------|--------|--------------|-----|------|---------|--------|------| | Day | | Replic | ate A | | | | ate B | | | | | Sal | Temp | • | pН | Sal | Temp | D.O. | pН | Sal | | | Temp | D.O. | pН | Sal | Temp | | | Sal | Temp | 6.8 | ρ⊓
7.98 | 28 | 22 | 6.7 | 7.99 | 28 | 22 | 6.7 | 8.03 | 28 | | 0 | 22 | 6.7 | 8.02 | 28 | 22 | 6.8 | 8.04 | 28 | 22 | 6.4 | 7.98 | 31 | 22 | 6.5 | 7.99 | 31 | 22 | 6.5 | 7.97 | 31 | | 1 | 22 | 6.6 | 8.00 | 31 | 22 | 6.6 | 8.01 | 31 | 22 | 7.0 | 8.09 | 28 | 22 | 7.1 | 8.10 | 28 | 22 | 7.1 | 8.11 | 28 | | 2 | 22 | 6.4 | 8.09 | 29 | 22 | 6.8 | 8.09 | 28 | 22 | 7.0
7.3 | 8.12 | 28 | 22 | 7.3 | 8.14 | 28 | 22 | 7.2 | 8.14 | | | 3 | 22 | 7.3 | 8.17 | 29 | 22 | 7.3 | 8.11 | 29 | 22 | 6.7 | 8.14 | 30 | 22 | 6.8 | 8.13 | 29 | 22 | 6.9 | 8.14 | 29 | | 4 | 22 | 6.9 | 8.14 | 29 | 22 | 6.8 | 8.13 | 30 | 22 | 6.5 | 8.30 | 30 | | 6.6 | 8.32 | 30 | 22 | 6.6 | 8.24 | | | 5 | 22 | 6.6 | 8.35 | 30 | 22 | 5.6 | 8.08 | 30 | 22 | 7.0 | 8.27 | 29 | 22 | 7.0 | 8.27 | 29 | 22 | 7.0 | 8.26 | | | 6 | 22 | 6.9 | 8.29 | 30 | 22 | 7.0 | 8.28 | 29 | 22 | 7.0
7.0 | 8.23 | 29
29 | 22 | 7.0 | 8.26 | 29 | | 7.0 | 8.26 | | | 7 | 22 | 7.0 | 8.27 | 29 | 22 | 7.0 | 8.24 | 29 | 22 | 7.0
7.2 | 8.23 | 29 | | 7.2 | 8.30 | 29 | 21 | 7.3 | 8.21 | 29 | | 8 | 21 | 7.2 | 8.07 | 28 | 21 | 7.2 | 8.22 | 28 | 21 | 6.1 | 8.32 | 29 | | 6.0 | 8.33 | 29 | 21 | 6.1 | 8.34 | | | 9 | 21 | 5.9 | 8.31 | 29 | 21 | 6.0 | 8.33 | 30 | | 6.1 | 8.35 | 30 | | 6.1 | 8.36 | 29 | 21 | 6.3 | 8.34 | 29 | | 10 | 21 | 6.0 | 8.39 | 30 | 21 | 6.1 | 8.39 | 30 | 21 | 0.1 | 0,33 | 50 | • | • | | | | | | | | C-3-SED-SMP | • | | | | | | | | | | Dank | eete C | | | Replic | cate D | | | Replic | ate E | | | Day | | Replie | cate A | | | | cate B | | | | cate C | 0-1 | Tomo | D.O. | pΗ | Sal | Temp | D.O. | pН | Sal | | , | Temp | D.O. | pН | Sal | Temp | D.O | pН | Sal | Temp | | | Sal | Temp | | 7.98 | | | | • | 28 | | 0 | 22 | 6.7 | 8.00 | 28.3 | 22 | 6.8 | 8.01 | 28 | | | | 28 | | | 7.95
7.95 | | | | | | | 1 | 22 | 6.5 | 7.95 | 29 | 22 | 6.6 | 7.96 | 31 | | | | 31 | | | 7.97 | | - | | | | | 2 | 22 | | 8.10 | 28 | 22 | 7.1 | 8.03 | 29 | | | 7.97 | 28 | | | | | | | | | | 3 | 22 | | 8.09 | 29 | 22 | 7.2 | 8.02 | 28 | | | | 28 | | | • | | | | | | | 4 | 22 | - | | 30 | 22 | 6.6 | 8.05 | 29 | | | | | | | | | | | | | | 5 | 22 | | | 29 | 22 | 6.7 | 7.92 | 30 | | | | | | | | | | | | • | | 6 | 22 | | | - | | 6.9 | 7.97 | 29 | | | | 29 | | | | | | | | | | 7 | 22 | _ | | | 22 | 6.9 | 7.80 | 28 | 3 22 | | | | | | | | | | | _ | | 8 | 21 | | | | | 7.7 | 7.68 | 28 | 3 21 | | | 29 | | | | | | | - | | | 9 | 21 | | - | | | 5.9 | 8.01 | 29 | 21 | | | | | | | | | | | - | | J | ~ 1 | | | | | | 8.03 | 29 | 21 | 5.5 | 8.01 | 30 |) 2' | 5.6 | 8.01 | 30 | 1 21 | 23.3 | 5 O.V. | , 20 | 21 6.1 8.03 21 5.8 8.16 29 CLIENT: SAIC STUDY NUMBER: 7814 PROJECT: RAYMARK 1999 **Water Quality Data** PARAMETER: | | | | | | | | | • | | | | | | | | | | | | | |---------------------|--|--|--|--|--|--|--|---|--|--|--|--|--|---|--|--|--|---|--|--| | D-1-SED-SMP | | | | | | | | | | | anta C | | | Replic | ate D | | | Replica | te E | | | Day | | Replic | ate A | | | | cate B | | | • | cate C | Cal | Temp | D.O. | | Sal | Temp | • | pН | Sal | | -2 | Temp | D.O. | pН | Sal | Temp | D.O | | Sal | Temp | | | Sal
30 | 22 | 6.8 | 7.86 | 30 | 22 | 6.8 | 7.83 | 30 | | 0 | 22 | 6.1 | 7.66 | 30 | 22 | 6.1 | 7.90 | 30 | 22 | 6.6 | 7.92 | 33 | 22 | 6.6 | 7.94 | 33 | 22 | 6.5 | 7.91 | 33 | | 1 | 22 | 5.9 | 7.92 | 33 | 22 | 6.0 | 7.90 | 33 | 22 | 6.2 | 7.95 | 30 | 22 | 7.0 | 7.93 | 30 | 22 | 7.0 | 7.88 | 29 | | 2 | 22 | 6.9 | 7.98 | 29 | 22 | 7.0 | 7.97 | 28 | 22 | 7.0 | 7.94 | 30
29 | 22 | 7.0 | 7.87 | 28 | 22 | 7.2 | 7.83 | 29 | | 3 | 22 | 7.1 | 7.97 | 29 | 22 | 7.2 | 7.87 | 29 | 22 | 7.3 | 7.86 | 30 | 22 | 6.6 | 7.96 | 29 | 22 | 6.8 | 7.97 | 29 | | 4 | 22 | 6.7 | 8.06 | 29 | 22 | 7.0 | 7.93 | 29 | 22 | 6.9 | 7.91 | 30 | 22 | 6.8 | 7.81 | 30 | 22 | 6.8 | 7.80 | 30 | | 5 | 22 | 6.7 | 7.95 | 30 | | 6.8 | 7.91 | 30 | 22 | 6.8 | 7.90 | 29 | 22 | 7.1 | 7.80 | 29 | 22 | 7.1 | 7.77 | 28 | | 6 | 22 | 6.9 | 7.89 | 29 | 22 | 7.0 | 7.80 | 28 | 22 | 7.1 | 7.79 | 29
29 | 22 | 7.0 | | 29 | 22 | 7.0 | 7.59 | 29 | | 7 | 22 | 7.0 | 7.70 | 29 | 22 | 7.0 | 7.70 | 28 | 22 | 7.1 | 7.71 | 29
29 | | 7.3 | | 30 | 21 | 7.3 | 7.75 | 31 | | 8 | 21 | 7.3 | 7.54 | 29 | | 7.3 | 7.71 | 29 | 21 | 7.3 | 7.70 | 29
29 | | 6.2 | | 29 | 21 | 6.2 | 7.82 | 30 | | 9 | 21 | 6.2 | 7.88 | 28 | | 6.3 | 7.86 | 29 | 21 | 6.4 | 7.82 | | | 6.3 | | 29 | 21 | 6.2 | 7.83 | 30 | | 10 | 21 | 6.0 | 7.87 | 29 | 21 | 6.0 | 7.89 | 29 | 21 | 6.3 | 7 _: 88 | 29 | 21 | 0.5 | 7.01 | | - ' | D-2-SED-SMP | D-2-SED-SMP | | | | | | | | | | | anta C | | | Renlie | cate D | | | Replica | ate E | | | _ | | Repli | cate A | | | • | cate B | | | | cate C | Cal | Tomp | • | cate D | Sal | Temp | Replica | | Sal | | D-2-SED-SMP
Day | Temp | _ : | | Sal | Temp | D.O | pН | Sal | Temp | D.O. | ρН | Sal | Temp | D.Ò. | pН | Sal
28 | Temp | D.Ö. | ate E
pH
8.02 | Sal
28 | | _ | Temp
22 | • | pН | | Temp
22 | D.O
6.6 | pH
8.03 | Sal
28 | 22 | D.O.
6.6 | pH
7.78 | 28 | 22 | D.Ö.
6.5 | pH
8.03 | 28 | 22 | D.Ö.
6.6 | pH
8.02 | | | Day | | D.Ö. | pН | 28
30 | Temp
22
22 | D.O | pH
8.03
7.97 | Sal
28
30 | 22
22 | D.O.
6.6
6.5 | pH
7.78
8.00 | 28
30 | 22
22 | D.O.
6.5
6.2 | pH
8.03
8.01 | 28
30 | 22
22 | D.O.
6.6
6.1 | pH
8.02
8.00 | 28 | | Day | 22 | D.Ö.
6.6 | pH
8.00 | 28
30
30 | Temp
22
22
22 | D.O
6.6
6.4
7.0 | pH
8.03
7.97
8.12 | Sal
28
30
29 | 22
22
22 | D.O.
6.6
6.5
7.1 | pH
7.78
8.00
8.13 | 28
30
30 | 22
22
22 | D.O.
6.5
6.2
7.0 | pH
8.03
8.01
8.11 | 28
30
29 | 22
22
22 | D.O.
6.6
6.1
7.0 | pH
8.02
8.00
8.09 | 28
30 | | Day
0
1 | 22
22 | D.Ö.
6.6
6.4 | pH
8.00
7.91 | 28
30
30
28 | Temp
22
22
22
22 | D.O
6.6
6.4
7.0
7.4 | pH
8.03
7.97
8.12
8.12 | Sal
28
30
29
28 | 22
22
22
22 | D.O.
6.6
6.5
7.1
7.3 |
pH
7.78
8.00
8.13
8.14 | 28
30
30
28 | 22
22
22
22 | D.O.
6.5
6.2
7.0
7.3 | pH
8.03
8.01
8.11
8.12 | 28
30
29
28 | 22
22
22
22 | D.O.
6.6
6.1
7.0
7.1 | pH
8.02
8.00 | 28
30
29 | | Day
0
1
2 | 22
22
22 | D.O.
6.6
6.4
6.8 | pH
8.00
7.91
8.12
8.06 | 28
30
30 | Temp
22
22
22
22 | D.O
6.6
6.4
7.0
7.4
6.8 | pH
8.03
7.97
8.12
8.12
7.90 | Sal
28
30
29
28
29 | 22
22
22
22
22
22 | D.O.
6.6
6.5
7.1
7.3
6.8 | pH
7.78
8.00
8.13
8.14
7.88 | 28
30
30
28
30 | 22
22
22
22
22 | D.O.
6.5
6.2
7.0
7.3
6.9 | pH
8.03
8.01
8.11
8.12
7.86 | 28
30
29
28
30 | 22
22
22
22
22
22 | D.O.
6.6
6.1
7.0
7.1
6.9 | pH
8.02
8.00
8.09
8.09
7.81 | 28
30
29
28 | | Day 0 1 2 3 4 | 22
22
22
22 | D.O.
6.6
6.4
6.8
7.4 | pH
8.00
7.91
8.12
8.06 | 28
30
30
28
30 | Temp
22
22
22
22
22
22 | D.O
6.6
6.4
7.0
7.4
6.8
6.8 | pH
8.03
7.97
8.12
8.12
7.90
8.26 | Sal
28
30
29
28
29
30 | 22
22
22
22
22
22
22 | D.O.
6.6
6.5
7.1
7.3
6.8
6.8 | pH
7.78
8.00
8.13
8.14
7.88
8.25 | 28
30
30
28
30
30 | 22
22
22
22
22
22
22 | D.O.
6.5
6.2
7.0
7.3
6.9
6.8 | pH
8.03
8.01
8.11
8.12
7.86
8.20 | 28
30
29
28
30
30 | 22
22
22
22
22
22
22 | D.O.
6.6
6.1
7.0
7.1
6.9
6.3 | pH
8.02
8.00
8.09
8.09
7.81
7.96 | 28
30
29
28
30 | | Day 0 1 2 3 | 22
22
22
22
22 | D.O.
6.6
6.4
6.8
7.4
6.9
6.8 | pH
8.00
7.91
8.12
8.06
7.91
8.31 | 28
30
30
28
30
30 | Temp
22
22
22
22
22
22
22 | D.O
6.6
6.4
7.0
7.4
6.8
7.0 | pH
8.03
7.97
8.12
8.12
7.90
8.26
8.23 | Sal
28
30
29
28
29
30
28 | 22
22
22
22
22
22
22
22 | D.O.
6.6
6.5
7.1
7.3
6.8
6.8
7.1 | pH
7.78
8.00
8.13
8.14
7.88
8.25
8.23 | 28
30
30
28
30
30
29 | 22
22
22
22
22
22
22
22 | D.O.
6.5
6.2
7.0
7.3
6.9
6.8 | pH
8.03
8.01
8.11
8.12
7.86
8.20
8.19 | 28
30
29
28
30
30
28 | 22
22
22
22
22
22
22
22 | D.O.
6.6
6.1
7.0
7.1
6.9
6.3
7.1 | pH
8.02
8.00
8.09
8.09
7.81
7.96
8.09 | 28
30
29
28
30
30 | | Day 0 1 2 3 4 5 | 22
22
22
22
22
22 | D.O.
6.6
6.4
6.8
7.4
6.9
6.8 | pH
8.00
7.91
8.12
8.06
7.91
8.31
8.18 | 28
30
30
28
30
30
30 | Temp
22
22
22
22
22
22
22 | D.O
6.6
6.4
7.0
7.4
6.8
7.0 | pH
8.03
7.97
8.12
8.12
7.90
8.26
8.23
8.21 | Sal
28
30
29
28
29
30
28 | 22
22
22
22
22
22
22
22
22 | D.O.
6.6
6.5
7.1
7.3
6.8
6.8
7.1
7.0 | pH
7.78
8.00
8.13
8.14
7.88
8.25
8.23
8.19 | 28
30
30
28
30
30
29 | 22
22
22
22
22
22
22
22
22
22 | D.O.
6.5
6.2
7.0
7.3
6.9
6.8
7.1 | pH
8.03
8.01
8.11
8.12
7.86
8.20
8.19 | 28
30
29
28
30
30
28
28 | 22
22
22
22
22
22
22
22
22 | D.O.
6.6
6.1
7.0
7.1
6.9
6.3
7.1
6.9 | pH
8.02
8.00
8.09
8.09
7.81
7.96
8.09
8.05 | 28
30
29
28
30
30
30 | | Day 0 1 2 3 4 5 6 7 | 22
22
22
22
22
22
22 | D.O.
6.6
6.4
6.8
7.4
6.9
6.8 | pH
8.00
7.91
8.12
8.06
7.91
8.31
8.18 | 28
30
30
28
30
30
28
28 | Temp 22 22 22 22 22 22 22 22 22 | D.O
6.6
6.4
7.0
7.4
6.8
7.0 | pH
8.03
7.97
8.12
7.90
8.26
8.23
8.21
8.17 | Sal
28
30
29
28
29
30
28
28 | 22
22
22
22
22
22
22
22
22 | D.O.
6.6
6.5
7.1
7.3
6.8
6.8
7.1
7.0 | pH
7.78
8.00
8.13
8.14
7.88
8.25
8.23
8.19 | 28
30
30
28
30
30
29
29
29 | 22
22
22
22
22
22
22
22
22
22
22
22 | D.O.
6.5
6.2
7.0
7.3
6.9
6.8
7.1
7.0
7.1 | pH
8.03
8.01
8.11
8.12
7.86
8.20
8.19
8.19 | 28
30
29
28
30
30
28
28
30 | 22
22
22
22
22
22
22
22
22 | D.O.
6.6
6.1
7.0
7.1
6.9
6.3
7.1
6.9
7.1 | pH
8.02
8.09
8.09
7.81
7.96
8.09
8.05
8.08 | 28
30
29
28
30
30
30
30 | | Day 0 1 2 3 4 5 | 22
22
22
22
22
22
22
22 | D.O.
6.6
6.4
6.8
7.4
6.9
6.9 | pH
8.00
7.91
8.12
8.06
7.91
8.31
8.18
8.20 | 28
30
30
28
30
30
28
28
28 | Temp 22 22 22 22 22 22 22 22 22 22 22 22 | D.O
6.6
6.4
7.0
7.4
6.8
7.0
7.0 | pH
8.03
7.97
8.12
8.12
7.90
8.26
8.23
8.21
8.17 | Sal
28
30
29
28
29
30
28
28
30 | 22
22
22
22
22
22
22
22
21
21 | D.O.
6.6
6.5
7.1
7.3
6.8
6.8
7.1
7.0 | pH
7.78
8.00
8.13
8.14
7.88
8.25
8.23
8.19
8.15 | 28
30
30
28
30
30
29
29
29
29 | 22
22
22
22
22
22
22
22
22
21
21 | D.O.
6.5
6.2
7.0
7.3
6.9
6.8
7.1
7.0 | pH
8.03
8.01
8.11
8.12
7.86
8.20
8.19
8.13
8.13 | 28
30
29
28
30
30
28
28
28
30
29 | 22
22
22
22
22
22
22
22
21
21 | D.O.
6.6
6.1
7.0
7.1
6.9
6.3
7.1
6.9 | pH
8.02
8.00
8.09
8.09
7.81
7.96
8.09
8.05
8.08
8.16 | 28
30
29
28
30
30
30
30
32
30 | 6.1 8.29 21 10 SAIC STUDY NUMBER: 7814 PROJECT: RAYMARK 1999 PARAMETER: **Water Quality Data** | D-3-SED-SMP | | Donlie | A | | | 2anli | cate B | | | Renli | cate C | | | Replic | ate D | | | Replica | ate E | | |-------------|------|--------|-------|-----|------|-------|--------|-----|------|-------|--------|-----|----------|--------|-------|-----|------|---------|-------|-----| | Day | | Replic | AIL A | | | • | | | | • | | 0-1 | T | • | | Sal | Temp | nò | рH | Sal | | | Temp | D.O. | pН | Sal | Temp | D.O | рН | Sal | Temp | D.O. | рн | Sal | Temp | D.O. | pН | | • | | • | | | n | 22 | 6.7 | 8.03 | 29 | 22 | 6.7 | 8.06 | 29 | 22 | 6.8 | 8.02 | 29 | 22 | 6.8 | 7.96 | 29 | 22 | 6.7 | 8.00 | | | 4 | 22 | 6.5 | 7.97 | 30 | 22 | 8.5 | 7.99 | 30 | 22 | 6.4 | 7.99 | 30 | 22 | 6.3 | 8.01 | 30 | 22 | 6.2 | 7.96 | 30 | | 1 | | | | | | | | | | 6.9 | | 30 | 22 | 6.9 | | 29 | 22 | 6.9 | 8.05 | 30 | | 2 | 22 | 6.6 | 8.08 | 30 | 22 | 6.8 | | 29 | 22 | | | | | | | | 22 | 7.5 | | 29 | | 3 | 22 | 7.3 | 8.05 | 28 | 22 | 7.4 | 8.08 | 28 | 22 | 7.4 | 8.07 | 28 | 22 | 7.4 | | 28 | | | | | | Ā | 22 | 7.0 | 8.15 | 29 | 22 | 7.0 | 8.17 | 29 | 22 | 6.9 | 8.15 | 29 | 22 | 6.9 | 8.14 | 28 | 22 | 6.8 | | | | - | 22 | 6.6 | 8.08 | 30 | 22 | 6.7 | | 30 | 22 | 6.8 | 8.17 | 30 | 22 | 6.8 | 8.01 | 30 | 22 | 6.7 | 8.05 | 30 | | 5 | | | | | | | | | 22 | 7.1 | 8.14 | 29 | 22 | 7.0 | 8.01 | 29 | 22 | 7.0 | 7.98 | 30 | | 6 | 22 | 7.0 | 8.09 | 29 | 22 | 7.0 | | 30 | | | | | | | | | 22 | 6.9 | | | | 7 | 22 | 6.8 | 8.08 | 30 | 22 | 6.9 | 8.03 | 29 | 22 | 6.9 | 8.08 | 30 | 22 | 6.9 | | 30 | | | | | | 8 | 21 | 7.4 | 8.04 | 30 | 21 | 7 3 | 7.93 | 30 | 21 | 7.2 | 8.12 | 30 | 21 | 7.2 | 7.99 | 30 | 21 | 7.3 | 7.96 | 31 | | - | | | | | 21 | 5.9 | 8.06 | 30 | 21 | 6.0 | 8.24 | 29 | 21 | 5.8 | 8.16 | 30 | 21 | 5.7 | 8.10 | 29 | | 9 | 21 | 6.0 | 8.23 | 29 | | | | | | | | | | 6.0 | | 30 | 21 | 5.9 | 8.13 | 29 | | 10 | 21 | 6.2 | 8.22 | 29 | 21 | 6.1 | 8.11 | 30 | 21 | 6.0 | 8.26 | 29 | 21 | 0.0 | 0.13 | 30 | 21 | 0.0 | 0.10 | | ## D-4-SED-SMP | Day | | Renli | eplicate A Replicate B | | | | | | | Repli | cate C | | | Replic | ate D | | | Replica | ate E | | |-----|------|-------|------------------------|-----|------|-----|------|-----|------|-------|--------|-----|------|--------|-------|-----|------|---------|-------|-----| | Day | Temp | • | | Sal | Temp | • | | Sal | Temp | D.Ö. | Hα | Sal | Temp | D.O. | pН | Sal | Temp | D.O. | рΗ | Sal | | • | _'_ | | · | 29 | 22 | _ | • | 29 | 22 | 6.6 | 7.98 | | 22 | 6.6 | 7.97 | 29 | 22 | 6.5 | 7.97 | 29 | | 0 | 22 | 6.6 | | | | | | | | | | 30 | 22 | | 8.05 | 30 | 22 | 6.1 | 8.08 | 30 | | 1 | 22 | 6.1 | 8.05 | 30 | 22 | 6.5 | 8.07 | 30 | 22 | 5.9 | | | | | | | | | | | | 2 | 22 | 6.5 | 8.25 | 30 | 22 | 6.7 | 8.25 | 29 | 22 | 6.8 | 8.24 | 29 | 22 | 6.8 | 8.23 | 29 | 22 | 6.9 | 8.23 | 30 | | 2 | 22 | 7.3 | 8.30 | 28 | 22 | | | 28 | 22 | 7.4 | 8.31 | 28 | 22 | 7.5 | 8.31 | 27 | 22 | 7.4 | 8.31 | 29 | | 3 | | | | _ | | | | | | | | | 22 | 6.8 | 8.35 | 30 | 22 | 6.8 | 8.37 | 30 | | 4 | 22 | 6.9 | 8.33 | 30 | 22 | 6.4 | 8.34 | 31 | 22 | 6.6 | 8.34 | 30 | 22 | | | | | | | | | 5 | 22 | 6.7 | 8.44 | 30 | 22 | 6.7 | 8.43 | 30 | 22 | 6.6 | 8.40 | 30 | 22 | 6.6 | 8.43 | 30 | 22 | 6.6 | | | | 6 | 22 | 6.8 | 8.42 | 30 | 22 | | | 29 | 22 | 6.9 | 8.40 | 30 | 22 | 7.0 | 8.40 | 28 | 22 | 7.0 | 8.43 | 30 | | 0 | | | | | | | | | | 6.8 | 8.35 | 29 | 22 | 6.8 | 8.40 | 28 | 22 | 6.8 | 8.41 | 30 | | 7 | 22 | 6.7 | 8.36 | 29 | 22 | 6.8 | 8.37 | 28 | 22 | 0.0 | | | | | | | | | | | | 8 | 21 | 7.3 | 8.33 | 30 | 21 | 7.3 | 8.35 | 30 | 21 | 7.3 | 8.34 | 30 | 21 | 7.3 | 8.43 | 30 | 21 | 7.2 | | |
 Č | _: | | • | 20 | 21 | 6.2 | 8.48 | 29 | 21 | 6.1 | 8.48 | 30 | 21 | 6.2 | 8.53 | 30 | 21 | 6.0 | 8.54 | 30 | | 9 | 21 | 6.0 | 8.42 | 29 | 21 | U.Z | | | | | | | | | | 20 | 24 | 6.1 | 8.54 | 30 | | 10 | 21 | 5.6 | 8.44 | 29 | 21 | 5.8 | 8.50 | 29 | 21 | 6.0 | 8.47 | 29 | 21 | 6.0 | 8.54 | 30 | 21 | 0.1 | 0.34 | 30 | SAIC STUDY NUMBER: 7814 PROJECT: RAYMARK 1999 PARAMETER: 10 Water Quality Data | D-5-SED-SMP | | | | | | | | | | | | | | | | | | D"- | -4- E | | |-------------|----------|-------|--------|-----|------|-------|-----------|-----|------|-------|--------|-----|------|--------|--------|-----|------|---------|-------|-----| | Day | | Repli | cate A | | 1 | Repli | cate B | | | Repli | cate C | | | Replic | | | _ | Replica | | 0-1 | | Day | Temp | • | | Sal | Temp | D.O | pН | Sal | Temp | D.O. | рН | Sal | Temp | D.O. | • | Sal | Temp | | pΗ | Sal | | 0 | 22 | 6.5 | | 29 | 22 | 6.5 | • | 29 | 22 | 6.6 | 7.87 | 29 | 22 | 6.6 | | 29 | 22 | 6.5 | 7.97 | 29 | | 1 | 22 | 6.2 | | 30 | 22 | 6.1 | 7.98 | 30 | 22 | 6.4 | 7.99 | 30 | 22 | 6.3 | | 30 | 22 | 6.3 | 7.98 | 30 | | ż | 22 | 6.6 | | 29 | 22 | 6.7 | 8.16 | 29 | 22 | 6.8 | 8.09 | 27 | 22 | 6.8 | 8.09 | 30 | 22 | 6.8 | 8.08 | 30 | | 3 | 22 | 7.3 | | 28 | 22 | 7.4 | 8.17 | 29 | 22 | 7.4 | 8.18 | 28 | 22 | 7.3 | 8.15 | 28 | 22 | 7.3 | 8.09 | 29 | | 4 | 22 | 6.8 | 8.31 | 29 | 22 | 6.8 | 8.27 | 29 | 22 | 6.8 | 8.25 | 29 | 22 | 6.6 | 8.21 | 28 | 22 | 6.4 | 8.15 | 29 | | 5 | 22 | 6.5 | | 30 | 22 | 6.5 | | 30 | 22 | 6.6 | 8.31 | 30 | 22 | 6.6 | 8.29 | 30 | 22 | 6.6 | 8.36 | 30 | | 6 | 22 | 6.7 | | 29 | 22 | 6.9 | 8.23 | 30 | 22 | 7.0 | 8.24 | 29 | 22 | 7.0 | 8.25 | 29 | 22 | 6.9 | 8.23 | 30 | | 7 | 22 | 6.8 | | 29 | 22 | 6.8 | 8.15 | 29 | 22 | 6.9 | 8.15 | 29 | 22 | 6.8 | 8.17 | 28 | 22 | 6.8 | 8.15 | 30 | | 8 | 21 | 7.4 | | 29 | 21 | 7.3 | 8.11 | 31 | 21 | 7.4 | 8.12 | 30 | 21 | 7.3 | 8.11 | 33 | 21 | 7.2 | 8.14 | 31 | | 9 | 21 | 6.0 | | 28 | 21 | 6.0 | | 29 | 21 | 5.8 | 8.24 | 29 | 21 | 6.0 | 8.21 | 30 | 21 | 6.2 | 8.20 | 31 | | 10 | 21 | 5.8 | | 28 | 21 | 5.9 | 8.27 | 28 | 21 | 6.0 | 8,26 | 28 | 21 | 6.0 | 8.22 | 29 | 21 | 6.1 | 8.21 | 29 | | 10 | 21 | 3.0 | 0.50 | 20 | | 0.0 | U. | | | | • | | | | | | | | | | | D-6-SED-SMP | D | | Popli | cata A | | 1 | Renli | cate B | | | Repli | cate C | | | Replic | cate D | | | Replic | ate E | | | Day | T | • | cate A | Cal | Temp | • | | Sal | Temp | | | Sal | Temp | - | | Sal | Temp | D.O. | pН | Sal | | | Temp | | | Sal | • | | - | 29 | 22 | 6.8 | | | 22 | | • | 29 | 22 | 6.8 | - | 29 | | 0 | 22 | 6.6 | | 29 | 22 | 6.5 | | 31 | 22 | 6.4 | 7.95 | | 22 | 6.3 | | 31 | 22 | 6.2 | | 31 | | 1 | 22 | 6.1 | 7.93 | 31 | 22 | 6.1 | 8.00 | | | 6.9 | 8.11 | 30 | 22 | | | 30 | 22 | 7.1 | 8.13 | 30 | | 2 | 22 | 6.4 | | 30 | | 6.6 | 8.08 | 30 | | | | 29 | 22 | | | 28 | 22 | 7.4 | 8.08 | 30 | | 3 | 22 | 7.3 | | 28 | 22 | 7.4 | | 28 | 22 | 7.4 | 8.12 | | _ | | | 29 | 22 | 6.8 | | | | 4 | 22 | 6.4 | | 30 | | 6.5 | | 29 | 22 | 6.4 | 8.15 | 29 | 22 | | | | 22 | 6.6 | | | | 5 | 22 | 6.1 | 8.13 | 30 | 22 | 6.5 | | 30 | | 6.6 | 8.20 | | | | | 30 | | 7.0 | | | | 6 | 22 | 6.5 | 8.10 | 29 | 22 | 6.8 | 8.10 | 30 | | 6.9 | 8.19 | | | | | 30 | 22 | | | | | 7 | 22 | 6.6 | 7.99 | 27 | 22 | 6.7 | 7.99 | 28 | | 6.9 | 8.15 | | 22 | | | 28 | 22 | 6.8 | | | | 8 | 21 | 7.3 | 8.06 | 29 | 21 | 7.4 | 8.00 | 31 | 21 | 7.2 | 8.25 | 30 | | 7.4 | | 31 | 21 | 7.3 | | 31 | | 9 | 21 | 6.3 | 8.15 | 30 | 21 | 6.5 | 8.16 | 31 | 21 | 6.2 | 8.46 | | | 6.3 | | 31 | 21 | 6.4 | | | | | | | | | - 4 | | 0.00 | 20 | 24 | 20 | 9 47 | 20 | 21 | 6 A | R RO | 30 | 21 | 6.2 | 8.63 | 30 | 30 21 6.0 8.47 21 5.9 8.26 30 5.7 8.20 30 21 6.2 8.63 6.0 8.60 30 21 CLIENT: SAIC STUDY NUMBER: 7814 PROJECT: RAYMARK 1999 PARAMETER: Water Quality Data | D-6-SED-FD | | | | | _ | | | | | D!' | | | | Donlie | and D | | | Replic | oto E | | |------------|------|--------|--------|-----|------|-------|--------|-----|------|------|--------|-----|------|--------|-------|-----|------|--------|-------|-----| | Day | | Replic | cate A | | | Repli | cate B | | | кери | cate C | | | Replic | ale D | | | Kehiic | | | | | Temp | D.Ö. | pН | Sal | Temp | D.O | рΗ | Sal | Temp | D.O. | рН | Sal | Temp | D.O. | pН | Sal | Temp | D.O. | pН | Sal | | 0 | 22 | 6.7 | 8.04 | 28 | 22 | 6.7 | 8.00 | 28 | 22 | 6.8 | 8.03 | 28 | 22 | 6.8 | 7.99 | 28 | 22 | 6.8 | | _ | | 1 | 22 | 6.4 | 7.98 | 29 | 22 | 6.3 | 7.98 | 29 | 22 | 6.4 | 8.02 | 29 | 22 | 6.4 | 8.04 | 29 | 22 | 6.4 | 8.04 | | | 2 | 22 | 6.5 | 7.97 | 29 | 22 | 6.7 | 7.98 | 29 | 22 | 7.0 | 8.02 | 30 | 22 | 6.9 | 8.05 | 30 | 22 | 7.1 | 8.05 | | | 3 | 22 | 7.2 | 8.06 | 26 | 22 | 7.4 | 8.04 | 28 | 22 | 7.4 | 8.03 | 28 | 22 | 7.4 | 8.03 | 28 | 22 | 7.5 | | _ | | 4 | 22 | 7.0 | 7.94 | 30 | 22 | 7.2 | 7.99 | 29 | 22 | 6.8 | 7.98 | 30 | 22 | 6.8 | 7.99 | 30 | 22 | 6.5 | | | | 5 | 22 | 6.4 | 7.89 | 30 | 22 | 6.8 | 8.00 | 30 | 22 | 6.9 | 8.02 | 30 | 22 | 6.8 | 8.02 | 30 | 22 | 6.9 | | 30 | | 6 | 22 | 6.8 | 7.93 | 28 | 22 | 6.8 | 8.00 | 28 | 22 | 6.9 | 8.00 | 29 | 22 | 7.0 | 8.00 | 28 | 22 | 7.0 | | | | 7 | 22 | 6.7 | 7.96 | 28 | 22 | 6.8 | 7.86 | 28 | 22 | 6.9 | 7.86 | 29 | 22 | 7.0 | 7.92 | 30 | 22 | 6.9 | • • • | | | 8 | 21 | 7.1 | 7.73 | 30 | 21 | 7.3 | 7.90 | 28 | 21 | 7.3 | 7.92 | 30 | 21 | 7.4 | 7.92 | 30 | 21 | 7.4 | | - | | 9 | 21 | 5.8 | 8.13 | 29 | 21 | 6.0 | 8.08 | 29 | 21 | 6.1 | 8.06 | 30 | 21 | 6.0 | 8.05 | 29 | 21 | 6.2 | | | | 10 | 21 | 6.1 | 8.11 | 29 | 21 | 5.8 | 8.04 | 29 | 21 | 6.0 | 8,06 | 30 | 21 | 6.1 | 8.05 | 29 | 21 | 6.2 | 8.06 | 29 | ## E-1-SED-SMP | Day | | Replicate A Replicate B | | | | | | | | Repli | cate C | | | Replic | ate D | | | Replica | ate E | | |-----|------|-------------------------|------|-----|------|-----|------|-----|------|-------|--------|-----|------|--------|-------|-----|------|---------|-------|-----| | , | Temp | D.Ö. | pН | Sal | Temp | D.O | pН | Sal | Temp | D.O. | ρН | Sal | Temp | D.O. | рΗ | Sal | Temp | D.O. | pН | Sal | | 0 | 22 | 6.7 | 7.42 | 27 | 22 | 6.8 | • | 27 | 22 | 6.8 | 7.90 | 27 | 22 | 6.7 | 7.26 | 27 | 22 | 6.8 | 7.51 | 27 | | 1 | 22 | 6.3 | 7.87 | 29 | 22 | 6.4 | 7.65 | 29 | 22 | 6.4 | 7.62 | 29 | 22 | 6.5 | 7.58 | 29 | 22 | 6.6 | 7.58 | 29 | | 2 | 22 | 7.0 | 8.02 | 30 | 22 | 7.1 | 7.53 | 26 | 22 | 7.2 | 7.51 | 27 | 22 | 7.1 | 7.52 | 27 | 22 | 7.1 | 7.54 | 28 | | 3 | 22 | 7.3 | 7.96 | 26 | 22 | 7.4 | 7.46 | 26 | 22 | 7.5 | 7.44 | 26 | 22 | 7.5 | 7.46 | 26 | 22 | 7.5 | 7.44 | 26 | | 4 | 22 | 6.4 | 7.74 | 26 | 22 | 6.2 | 7.54 | 27 | 22 | 6.3 | 7.49 | 26 | 22 | 6.4 | 7.48 | 26 | 22 | 6.5 | 7.44 | 26 | | 5 | 22 | 6.5 | 7.42 | 30 | 22 | 6.8 | 7.25 | 30 | 22 | 6.9 | 7.37 | 30 | 22 | 6.8 | 6.93 | 30 | 22 | 6.8 | 7.40 | 30 | | 6 | 22 | 6.2 | 7.23 | 27 | 22 | 6.7 | 7.23 | 27 | 22 | 6.9 | 7.33 | 27 | 22 | 6.7 | 7.34 | 27 | 22 | 6.8 | 7.32 | 27 | | 7 | 22 | 6.7 | 7.53 | 27 | 22 | 6.8 | 7.47 | 26 | 22 | 6.9 | 7.36 | 27 | 22 | 6.7 | 7.34 | 27 | 22 | 6.9 | 7.32 | 27 | | 8 | 21 | 7.0 | 6.29 | 26 | 21 | 7.2 | 6.54 | 27 | 21 | 7.4 | 6.85 | 27 | 21 | 7.3 | 6.76 | 28 | 21 | 7.3 | 6.88 | 28 | | 9 | 21 | 6.0 | 7.68 | 27 | 21 | 6.0 | 7.49 | 27 | 21 | 6.0 | 7.43 | 27 | 21 | 6.3 | 7.38 | 27 | 21 | 6.2 | 7.36 | 28 | | 10 | 21 | 5.7 | 7.42 | 28 | 21 | 6.1 | 7.33 | 28 | 21 | 6.2 | 7.21 | 27 | 21 | 5.9 | 7.17 | 27 | 21 | 5.9 | 7.23 | 28 | ĺ SAIC STUDY NUMBER: 7814 PROJECT: RAYMARK 1999 PARAMETER: Water Quality Data | E-2-SED-SMP | | Donli | cate A | | , | Danli | cate B | | | Reoli | cate C | | | Replic | cate D | | | Replic | ate E | | |-------------|------|--------|--------|-----|-------------|-------|--------|-----|------|-------|--------|-----|------|--------|--------|-----|------|------------|-------|-----| | Day | Temp | • | | Sal | Temp | • | | Sal | Temp | • | | Sal | Temp | D.O. | | Sal | Temp | • | pН | Sal | | _ | • | | • | | | 3.1 | | 28 | 22 | 3.4 | 6.50 | 28 | 22 | | 6.51 | 28 | • | 3.6 | 6.50 | 28 | | 0 | 22 | 2.3 | | | 22 | ••• | 6.52 | | | | 7.64 | 30 | 22 | 7.5 | | 30 | | 7.2 | | 30 | | 1 | 22 | 7.0 | | 30 | 22 | 7.3 | | 30 | 22 | 7.6 | | | | | | 26 | | 7.0 | | 26 | | 2 | 22 | 6.7 | | 27 | 22 . | 7.0 | | 26 | 22 | 7.1 | 7.49 | 26 | 22 | | | | | | 7.24 | 26 | | 3 | 22 | 7.4 | 7.44 | 26 | | 7.5 | 7.31 | 26 | 22 | 7.5 | 7.29 | 26 | 22 | | | 26 | | 7.5 | | | | 4 | 22 | 6.8 | 7.40 | 26 | 22 | 6.7 | 7.37 | 25 | 22 | 6.8 | 7.32 | 26 | 22 | | 7.32 | 25 | | 6.5 | 7.28 | 25 | | 5 | 22 | 6.9 | 7.07 | 30 | 22 | 6.9 | 6.95 | 30 | 22 | 6.9 | 6.96 | 30 | 22 | 6.9 | | 30 | | 6.9 | 7.07 | 30 | | 6 | 22 | 6.7 | 7.39 | 27 | 22 | 6.9 | 7.42 | 27 | 22 | 7.0 | 7.43 | 27 | 22 | 6.8 | 7.44 | 26 | | 6.9 | 7.43 | 26 | | 7 | 22 | 6.9 | 7.35 | 27 | 22 | 6.9 | 7.34 | 27 | 22 | 6.9 | 7.31 | 27 | 22 | 6.9 | 7.29 | 26 | | 6.8 | 7.28 | 27 | | 8 | 21 | 7.6 | 6.88 | 27 | 21 | 7.3 | 6.93 | 29 | 21 | 7.4 | 6.93 | 27 | 21 | 7.5 | 6.69 | 27 | 21 | 7.4 | 6.63 | 28 | | 9 | 21 | 6.7 | 7.41 | 27 | 21 | 6.6 | 7.41 | 28 | 21 | 6.3 | 7.40 | 27 | 21 | 6.4 | 7.41 | 27 | 21 | 6.2 | 7.39 | 27 | | 10 | 21 | 6.4 | | 27 | 21 | 6.3 | 7.36 | 27 | 21 | 6.4 | 7,37 | 28 | 21 | 6.4 | 7.41 | 28 | 21 | 6.4 | 7.40 | 28 | | E-3-SED-SMP | Day | | Replie | cate A | | ı | Repli | cate B | | | Repli | cate C | | | Replic | ate D | | | Replica | ate E | | | , | Temp | • | | Sal | Temp | • | | Sai | Temp | D.O. | pН | Sal | Temp | | • | Sal | Temp | | pН | Sal | | 0 | 22 | 6.4 | 7.47 | 27 | 22 | 6.5 | 7.53 | 27 | 22 | 6.7 | 7.40 | 27 | 22 | 6.8 | 7.41 | 27 | 22 | 6.7 | 7.37 | 27 | | 1 | 22 | 6.4 | 7.55 | 29 | 22 | 6.3 | 7.57 | 29 | 22 | 6.5 | 7.57 | 29 | 22 | 7.0 | 7.56 | 29 | 22 | 6.8 | 7.51 | 29 | | 2 | 22 | 6.9 | 7.44 | 27 | 22 | 7.1 | 7.47 | 27 | 22 | 7.1 | 7.50 | 28 | 22 | 7.1 | 7.51 | 28 | 22 | 7.1 | 7.50 | 28 | | 3 | 22 | 7.6 | 7.21 | 26 | 22 | 7.5 | 7.46 | 26 | 22 | 7.5 | 7.47 | 26 | 22 | 7.3 | 7.47 | 26 | 22 | 7.4 | 7.45 | 26 | | 4 | 22 | 6.6 | 7.28 | 25 | 22 | 6.4 | 7.30 | 26 | 22 | 6.5 | 7.31 | 26 | 22 | 6.5 | 7.24 | 26 | 22 | 6.5 | 7.22 | 25 | | 5 | 22 | 6.9
 7.26 | 30 | 22 | 6.9 | 7.25 | 30 | 22 | 6.9 | 7.29 | 30 | 22 | 6.9 | 6.96 | 30 | 22 | 6.7 | 6.99 | 30 | | | 22 | 7.0 | 7.56 | 28 | 22 | 7.0 | 7.56 | 28 | 22 | 7.1 | 7.57 | 27 | 22 | 6.9 | 7.56 | 27 | 22 | 6.9 | 7.48 | 28 | | 6 | | | | | | | 7.46 | | 22 | 7.0 | 7.46 | 27 | 22 | 6.9 | 7.27 | 26 | 22 | 6.8 | 7.56 | 27 | | (| 22 | 6.7 | 7.27 | 30 | 22 | 6.9 | | 28 | | | | | | 7.4 | 6.94 | 28 | 21 | 7.3 | 7.15 | 30 | | 8 | 21 | 7.5 | 7.25 | 28 | 21 | 7.4 | 7.23 | 29 | 21 | 7.4 | 7.19 | 28 | 21 | | | | 21 | 7.3
5.9 | 7.13 | 29 | | 9 | 21 | 5.8 | 7.35 | 29 | 21 | 5.9 | 7.34 | 28 | 21 | 5.7 | 7.35 | 29 | 21 | 5.8 | 7.35 | 28 | | | | | | 10 | 21 | 5.9 | 7.33 | 29 | 21 | 6.1 | 7.31 | 29 | 21 | 6.1 | 7.38 | 29 | 21 | 6.1 | 7.37 | 28 | 21 | 6.0 | 7.29 | 29 | CLIENT: SAIC STUDY NUMBER: 7814 PROJECT: RAYMARK 1999 PARAMETER: Water Quality Data | E-4-SED-SMP | | Dank | neto A | | | Danli | cate B | | | Renli | cate C | | | Replic | ate D | | | Replic | ate E | | |-------------|------|--------|--------|-----|------|-------|--------|-----|------|-------|--------|-----|------|--------|-------|-----|------|--------|-------|-----| | Day | | Replic | cate A | | | • | | | | • | | | | | | Cal | Tomo | nά | pН | Sal | | | Temp | D.O. | Hq | Sal | Temp | D.O | ρН | Sal | Temp | D.O. | рН | Sal | Temp | D.O. | pН | Sal | Temp | | • | | | 0 | 22 | 6.8 | 4.29 | 27 | 22 | 6.9 | | 27 | 22 | 6.9 | 3.90 | 27 | 22 | 6.9 | 4.41 | 27 | 22 | 6.9 | | | | 1 | 22 | 6.4 | 7.37 | 29 | 22 | 6.8 | 7.16 | 29 | 22 | 6.7 | 6.74 | 29 | 22 | 6.6 | 6.75 | 29 | 22 | 6.7 | 6.75 | 29 | | ż | 22 | | 6.84 | 28 | 22 | 7.0 | 5.51 | 27 | 22 | 7.1 | 5.04 | 27 | 22 | 7.0 | 5.51 | 29 | 22 | 7.1 | 5.38 | | | 2 | 22 | 7.5 | 7.25 | 27 | 22 | 7.5 | 7.23 | 26 | 22 | 7.5 | 7.20 | 27 | 22 | 7.5 | 7.16 | 28 | 22 | 7.4 | 7.17 | 28 | | J | 22 | | | 27 | 22 | | 7.14 | 26 | 22 | 6.8 | 7.11 | 27 | 22 | 6.6 | 7.12 | 28 | 22 | 6.7 | 7.14 | 27 | | 4 | | | | | | | | | | | | | 22 | 7.0 | 6.99 | 30 | 22 | 6.9 | 6.85 | 30 | | 5 | 22 | 6.8 | 6.75 | 30 | 22 | 6.9 | 5.89 | 30 | 22 | 7.0 | 6.53 | 30 | 22 | 7.0 | • | | | | | | | 6 | 22 | 6.9 | 7.47 | 27 | 22 | 7.1 | 6.86 | 27 | 22 | 7.1 | 7.10 | 28 | 22 | 7.1 | 7.26 | | | 7.0 | - | 28 | | 7 | 22 | 6.9 | 7.26 | 27 | 22 | 7.0 | 6.48 | 26 | 22 | 7.0 | 6.48 | 28 | 22 | 6.9 | 6.89 | 27 | 22 | 6.9 | | | | 8 | 21 | 7.6 | | -: | 21 | | 6.06 | | 21 | 7.5 | 6.44 | 28 | 21 | 7.5 | 6.93 | 28 | 21 | 7.5 | 6.60 | 29 | | _ | | | | | | | | | | | 6.97 | 27 | 21 | 5.9 | 7.02 | 26 | 21 | 5.8 | 7.05 | 29 | | 9 | 21 | 5.8 | 7.22 | 27 | 21 | 5.7 | 6.99 | 26 | 21 | 5.9 | | | | | | | | | | | | 10 | 21 | 6.1 | 7.28 | 27 | 21 | 6.1 | 7.17 | 27 | 21 | 5.9 | 7,16 | 27 | 21 | 5.8 | 7.25 | 27 | 21 | 5.7 | 7.28 | 28 | ## F-1-SED-SMP | Day | | Replicate A Replicate B | | | | | | | | Repli | cate C | | | Replic | ate D | | | Replica | ate E | | |-----|------|-------------------------|------|-----|------|-----|------|-----|------|-------|--------|-----|------|--------|-------|-----|------|---------|-----------|-----| | Day | Temp | • | pН | Sal | Temp | • | | Sal | Temp | D.Ö. | pН | Sal | Temp | D.Ò. | рΗ | Sal | Temp | D.O. | рΗ | Sal | | 0 | 22 | 6.9 | 7.99 | 29 | 22 | 6.9 | | | | 6.9 | 7.95 | 29 | 22 | 6.9 | 8.00 | 29 | 22 | 6.8 | 7.90 | 29 | | 1 | 22 | 7.1 | 7.74 | 31 | 22 | 6.9 | 7.91 | 31 | 22 | 6.8 | 7.98 | 31 | 22 | 7.0 | 8.04 | 31 | 22 | 6.9 | 8.04 | 31 | | 2 | 22 | 6.8 | 7.78 | 30 | 22 | 7.0 | 8.03 | 30 | 22 | 7.0 | 8.05 | 30 | 22 | 7.0 | 8.06 | 29 | 22 | 7.1 | 8.07 | 29 | | 3 | 22 | 7.3 | 8.14 | 28 | 22 | 7.4 | 8.16 | 29 | 22 | 7.5 | 8.17 | 29 | 22 | 7.4 | 8.17 | 29 | 22 | 7.4 | 8.16 | | | 4 | 22 | 6.8 | 8.14 | 28 | 22 | 6.7 | 8.29 | 28 | 22 | 6.7 | 8.32 | 28 | 22 | 6.8 | 8.27 | 28 | 22 | 6.6 | | 28 | | 5 | 22 | 6.8 | 8.43 | 30 | 22 | 6.8 | 8.58 | 30 | 22 | 6.7 | 8.51 | 30 | 22 | 6.8 | 8.44 | 30 | 22 | 6.8 | | 30 | | 6 | 22 | 6.9 | 8.43 | 29 | 22 | 7.0 | 8.58 | 29 | 22 | 7.0 | 8.58 | 29 | 22 | 7.0 | 8.47 | 30 | 22 | 6.9 | • • • • • | | | 7 | 22 | 6.8 | 8.46 | 29 | 22 | 6.9 | 8.49 | 29 | 22 | 6.9 | 8.48 | 29 | 22 | 6.9 | 8.47 | 30 | 22 | 6.9 | | 29 | | 8 | 21 | 7.5 | 8.40 | 29 | 21 | 7.5 | 8.33 | 30 | 21 | 7.5 | 8.36 | 30 | 21 | 7.5 | 8.38 | 31 | 21 | 7.5 | | 30 | | 9 | 21 | 5.9 | 8.45 | 29 | 21 | 6.1 | 8.44 | 30 | 21 | 6.3 | 8.44 | 29 | 21 | 5.9 | 8.45 | 30 | 21 | 6.0 | | 30 | | 10 | 21 | 6.1 | 8.33 | 29 | 21 | 6.1 | 8.33 | 29 | 21 | 6.1 | 8.38 | 29 | 21 | 6.3 | 8.38 | 29 | 21 | 6.2 | 8.45 | 30 | SAIC STUDY NUMBER: 7814 PROJECT: RAYMARK 1999 PARAMETER: **Water Quality Data** | F-2-SED-SMP | | Replic | | | | | _ | | | | | | | Danka | -4- D | | | Replica | ate F | | |-------------|------|--------|--------|-----|--------|-----|--------|-----|--------|-----|--------|-------------|------|--------|-------|-----------|----------|------------|------------|----------------------| | Day | | | | - | cate B | | | • | cate C | | _ | Replic | | 0-1 | T | - | | Sal | | | | • | Temp | D.O. | pН | Sal | Temp | D.O | pН | Sal | Temp | | | Sal | Temp | D.O. | • | Sal | Temp | 6.8 | рН
7.96 | 29 | | 0 | 22 | 6.6 | 8.01 | 29 | 22 | 6.6 | 7.99 | 29 | 22 | 6.7 | 7.98 | 29 | | | 7.98 | 29 | 22 | | | 31 | | 1 | 22 | 6.4 | 8.03 | 31 | 22 | 6.6 | 8.04 | 31 | 22 | 6.6 | 8.06 | 31 | | | 8.07 | 31 | 22 | 6.9 | | 30 | | 2 | 22 | 6.7 | 8.10 | 29 | 22 | 6.9 | 8.10 | 30 | 22 | 7.0 | 8.11 | 30 | | | 8.10 | 30 | 22 | 6.9
7.5 | | 29 | | 3 | 22 | 7.4 | 8.13 | 29 | 22 | 7.5 | 8.11 | 28 | 22 | 7.4 | 8.10 | 29 | | | 8.08 | 29 | 22 | 7.5
6.7 | 8.06 | 2 3
27 | | 4 | 22 | 6.8 | 8.10 | 27 | 22 | 6.9 | 8.08 | 27 | 22 | 6.6 | 8.07 | 28 | | | 8.06 | 28 | 22 | 6.8 | 8.10 | 30 | | 5 | 22 | . 6.8 | 8.14 | 30 | 22 | 6.8 | 8.12 | 30 | 22 | 6.8 | 8.09 | 30 | | | | 30 | 22
22 | 7.0 | 8.06 | 30 | | 6 | 22 | 7.1 | 8.16 | 29 | 22 | 7.1 | 8.11 | 29 | 22 | 7.1 | 8.10 | 29 | | | | 29 | 22 | 6.8 | | 28 | | 7 | 22 | 6.9 | 8.09 | 28 | 22 | 7.0 | | 28 | 22 | 6.7 | 7.86 | 28 | | | 7.92 | 29 | 21 | 7.5 | | 30 | | 8 | 21 | 7.5 | 7.65 | 28 | 21 | 7.5 | 7.96 | 30 | 21 | 7.4 | 7.86 | 29 | | | 7.97 | 31 | | 6.3 | | 29 | | 9 | 21 | 6.2 | 8.27 | 28 | 21 | 6.3 | | 30 | 21 | 6.1 | 8.02 | 28 | | | 8.06 | 30 | 21 | 6.4 | | 28 | | 10 | 21 | 5.9 | 8.18 | 28 | 21 | 6.1 | 8.08 | 29 | 21 | 6.3 | 7,97 | 29 | 21 | 6.2 | 8.04 | 29 | 21 | 0.4 | 0.04 | 20 | | F-3-SED-SMP | | | | | | | | | | D ! | | | | Donlie | ate D | | | Replica | ate F | | | Day | | Replic | cate A | | | • | cate B | | | | cate C | 0 -1 | T | • | | Sal | Temp | • | рH | Sal | | | Temp | D.O. | pН | Sal | Temp | | • | Sal | Temp | | | Sal | Temp | D.O. | • | 3ai
28 | 22 | 6.5 | • | 28 | | 0 | 22 | 6.6 | 8.04 | | 22 | 6.5 | | | 22 | 6.5 | 8.08 | | | | | 30 | 22 | 6.3 | | 30 | | 1 | 22 | 6.5 | 8.06 | 30 | 22 | 6.6 | | 30 | 22 | 6.3 | 8.10 | 30 | | | | 30
30 | 22 | 7.0 | | 29 | | 2 | 22 | 6.6 | 8.11 | 29 | 22 | 6.8 | 8.16 | 30 | 22 | 7.0 | 8.18 | 30 | | | 8.17 | 28 | 22 | 7.4 | | 28 | | 3 | 22 | 7.3 | 8.08 | 28 | 22 | 7.4 | 8.12 | | 22 | 7.5 | 8.14 | 28 | | | 8.15 | 28
28 | 22 | 6.8 | | 28 | | 4 | 22 | 6.6 | 8.11 | 29 | 22 | 6.8 | 8.12 | 30 | 22 | 6.6 | 8.12 | | | | | | | 6.8 | | 30 | | 5 | 22 | 6.8 | 8.18 | 30 | | 6.7 | | | 22 | 6.8 | 8.18 | | | | | 30 | | 7.1 | 8.16 | 28 | | 6 | 22 | 7.1 | 8.18 | 29 | | 7.1 | 8.18 | 29 | 22 | 7.1 | 8.17 | 29 | | | | 28 | 22 | | | 28 | | 7 | 22 | 6.8 | 8.15 | 27 | 22 | 7.0 | | 28 | 22 | 7.0 | 8.13 | | | | | 28 | | 6.9 | | | | 8 | 21 | 7.4 | 7.99 | 29 | 21 | 7.4 | 8.19 | | 21 | 7.4 | 8.18 | | | | | | | 7.5 | | 29
20 | | 9 | 21 | 6.1 | 8.34 | 28 | 21 | 6.3 | 8.42 | 28 | 21 | 6.2 | 8.41 | 29 | | | | 29 | | 6.1 | | 29 | | 10 | 21 | 5.9 | 8.33 | 28 | 21 | 6.1 | 8.29 | 28 | 21 | 6.3 | 8.31 | 29 | 21 | 6.3 | 8.31 | 29 | 21 | 6.3 | 8.16 | 28 | | STUDY # | 7314 | | SAMPI
Co | EID:
ntro | 1 | | DILUE | NT: Har
Est | npton
uary | START | DATE: | | | |---------|------|-----------|-------------|--------------|------|-------------|-------|----------------|---------------|------------|-------|------|----------| | DAY | | RE | PA | | | REF | • В | | | RE | PC | | INITIALS | | | TEMP | D.O. | рН | SAL. | ТЕМР | D.O. | pН | SAL. | TEMP | D.O. | рН | SAL. | | | 0 | 25 | 6.6 | 7.93 | 3∞_ | 22 | 6.8 | 7.94 | 30 | 22 | 6.9 | 796 | 30 | R | | 1 | J. | 1,4 | 7.77 | <u> </u> | 233 | 67 | 7.92 | 32 | 23 | 60 | 786 | 3,2_ | LL | | 2 | 22 | 7.2 | 7,72 | 27 | رو | 7.2 | 7,94 | 30 | 22 | 7,1 | 7.98 | 30 | | | 3 | 12 | 7.5 | 7.98 | 29 | 22 | 7.5 | 7.98 | 23 | 22 | 7.6 | 7.97 | 29 | ~ | | 4 | Ja | 70 | 787 | <u> </u> | 99 | Ų. <u>%</u> | 7.89 | 31 | વેર | 68 | 7.90 | 30 | 14 | | 5 | 22 | 7.0 | 8.07 | 30 | 22 | 6.9 | 8,00 | 30 | 22 | 6.8 | 2.99 | 30 | KOB | | 6 | 22 | 7.1 | 7,98 | 30 | 22 | 7,1 | 7.97 | 30 | حرر | 7.1 | 7.96 | 30 | ~ | | 7 | 22 | 7.1
51 | 7.87 | 30 | 22 | 7.1 | 7.86 | 30 | 2 ور | 7.1
5.9 | 7.86 | 30 | 1 | | 8 | 25 | 7.2 | 7.90 | 27 | 21 | 7.2 | 6.92 | 25 | 21 | 7.2 | 6.87 | 28 | cv | | 9 | 21 | 59 | 8.03 | 30 | ચા | 539 | 8,7. | 30 | ا لا | روز | 85% | | Wh | | 10 | 81 | و عا | 8.18 | 30 | A) | 6.4 | 8.19 | 30 | aı | હિ.પ | 8.17 | 30 | C.F | | # ALIVE | | 18 | 3 | | | ac |) | | | 10 | | | 14 | | DAY | | REI | P D | | | REF | P E | | | | AMMON | iA* | | |---------|----------------|------------|------|-------------|------|------|------|------|----------|-----|-------|------|-----| | | TEMP | D.O. | pН | SAL. | TEMP | D.O. | рH | SAL. | A | В | С | D | E | | 0 | ನ್ನ | 6.9 | 7.95 | 30 | حد | 69 | 795 | 30 | X | 111 | 111 | //// | 111 | | 1 | J _A | L.S. | 786 | <u> ક</u> a | રજ | 18 | 777 | 32 | | | | | | | 2 | 22 | 7.0 | 7.98 | <i>3</i> 0 | 22 | 6.9 | 7.95 | 30 | | | | | | | 3 | 22 | 75 | 7,94 | 28 | 22 | 7.6 | 7.95 | 29 | | | | | | | 4 | 92 | ७ % | 7.83 | 31 | રુટ | (1 | 788 | 31 | | | | | | | 5 | 22 | 6.7 | 8.03 | 30 | 22 | 6.8 | 8.09 | 30 | KIO | 11 | /// | 11/ | 11, | | 6 | 22 | 7.1 | 7.95 | 30 | 22 | 7.1 | 7.96 | -30 | | | | | | | 7 | 22 | 7.6 | 7.86 | 3c | وفر | 7,54 | 7.91 | 30 | | | | | | | 8 | 2' | ď
/× | 7.08 | 7 | 21 | 7.1 | 7.96
 5 | | | | | | | 9 | a١ | lel | T03 | વેશ્વ | 21 | 43 | 708 | 29 | | | | | | | 10 | 21 | 4 | 8.17 | 30 | ઢા | le.3 | 8.14 | 30 | 24 | 111 | /// | /// | 111 | | # ALIVE | | 16 |) | | | 1 | ٥ | | | | | | | ⁻ Ammonia values on Day 0 were measured on the porewater. Ammonia on Days 5 and 10 were measured on the overlying water. | STUDY | # 7814 - (| 1 | SAME | PLE ID: | · <u>-</u> | | DILUI | ENT: Ha | | STAF | | | | - | |---------|------------|---------------------------------------|------|---------|-------------|------------|--------------|------------|----------|-------------------|---------|------------|-------------------------|--------| | | | | C-1 | - < = | -5146 | a | | Es | stuary | SIAF | RT DATE | : | | | | DAY | 7 | === | | -36. | 7-31-11 | \
 | | | | | | | | | | | | , , , , , , , , , , , , , , , , , , , | EP A | | | RE | EP B | | | R | EP C | | INITIAL | ≡
s | | | TEMP | D.O. | рH | SAL. | TEMP | D.O. | рН | SAL. | TEMP | D.O. | рН | | | | | 0 | 22 | 6.8 | 801 | 29 | 22 | 6.8 | 8.01 | 29 | 2,2 | 6.8 | 7.99 | SAL | .0 | ┥ | | 1 | 23 | مايا | 7.99 | 31 | <u>а</u> д. | 12 | 108 | 31 | 33 | 1.A | 8.01. | 29 | & | _ | | 2 | 22 | 6.8 | 8.00 | 30 | 22 | 7.0 | 8.10 | T | | | | 31 | ul | + | | 3 | 22 | 7.4 | 2.12 | 29 | 22 | 1.4 | 8.12 | 37 | 22 | 6,4 | 8.10 | | | 4 | | 4 | 20 | 38 | 812 | | 24 | 1,9 | 8.16 | | | 7.4 | 8.12 | | | 4 | | 5 | 22 | 6.8 | 8.37 | 30 | 22 | 6.8 | 8.37 | 30 | 22
22 | 6.7 | 8.15 | | Uh | - | | 6 | 22 | 6.9 | 8.31 | 30 | 22 | 7,1 | 8.32 | 30 | | | 8.30 | 30 | XKB | - | | 7 | 22 | 7.0 | 8.18 | .3c | 22 | 7:1 | | | 22 | 7.1
7.1
5.4 | 8.31 | <i>3</i> o | | - | | 8 | 21 | 7.1 | જ.06 | 28 | 71 | 70 | 8.29
8.32 | 30
28 | 22 | | 8.23 | | | 4 | | 9 | 21 | 6.5 | 841 | 38 | 21 | <i>U</i> 2 | 842 | | 21 | 7.3 | 8.50 | 27 | $\frac{\omega}{\omega}$ | 1 | | 10 | 21 | 6.3 | 8.48 | 29 | 21 | | | | الج | 63 | 817 | | KL | 1 | | # ALIVE | <u> </u> | 13 | 0.40 | ۵-۱ | αι | | 8.46 | <u>a</u> 9 | ۵۱ | <u>له.ه</u> | 8.48 | 29 | <u> </u> | * | | | | | | | | 13 | | | | 9 | | | | | | DAY | 1 | RE | EP D | | | DE | PE | | 7 | | | | | |---------|------|------------|------|---------------|--------------|------|--------------|------|------------|-------------|-------|------|------| | <u></u> | TEMP | D.O. | рH | CAL | | T | Т | | | | AMMON | IA* | | | 0 | | | T | SAL. | TEMP | D.O. | pH | SAL. | A | В | C | D | E | | ļ | 22 | 6.7 | 820 | 29 | 22 | 67 | 8.02 | 29 | ~ | 14 | 111 | 11/1 | 121 | | 1 | 33 | 1_A | 8.17 | 31 | 22 | 63 | 801 | 31 | -0 | | 107 | 1021 | 100/ | | 2 | 22 | 6.9 | 8.10 | 28 | 32 | 6.9 | 8.09 | | | | | | | | 3 | 22 | 7.3 | 2.11 | 27 | 22 | 7.4 | 8.10 | | | | | | | | 4 | 22 | U.S | 8.14 | 31 | 22 | 1,7 | 815 | 30 | | | | | | | 5 | 22 | 6.7 | 8,35 | 30 | 22 | 6.7 | 8,33 | 30 | XFB | | | | | | 6 | 22 | 6.5 | 8,18 | 30 | 22 | 6,9 | 8.28 | | <i>λ</i> β | | | | | | 7 | 22 | 6.9
5.8 | 3.25 | 29 | 22 | 6.9 | | 30 | | | | | | | 8 | 21 | 7.2 | 8:32 | 70 | 21 | 7.1 | 8.25
8.37 | 30 | | | | | | | 9 | 21 | ره (| | | 21 | | | | | | | | | | 10 | 81 | 62 | 847 | 29 | | | 842 | 30 | ^_ | | | | | | # ALIVE | | ر
چو_ا | 0471 | 47 | <u>ar</u> | 6. | 8.47 | 30 | <u> </u> | | | | | Ammonia values on Day 0 were measured on the porewater. Ammonia on Days 5 and 10 were measured on the overlying water. | STUDY # | 7814 -⊋ | | SAMP | E ID: | | | DILUE | | npton
uary | START | T DATE: | | | |---------|---------|-----------------|------|--------|-------|------|-------|------------|---------------|-------|---------|-----|----------| | | | | C- | J - Se | ED- 5 | MP | | | | | | | | | DAY | | RE | PA | | | REI | P B | | | RE | PC | | INITIALS | | | TEMP | D.O. | рH | SAL. | TEMP | D.O. | рН | SAL. | TEMP | D.O. | рΗ | SAL | | | 0 | 22 | 47 | 8.02 | 28 | 22 | 48 | 8.04 | 28 | 22 | 6.8 | 7.98 | 28 | -R | | 1 | ગેત્ર | واو1 | 8.00 | 31 | 22 | 1,6 | 801 | 31 | 23 | 1,4 | 798 | 3(| w | | 2 | 22 | 6.4 | 8.01 | 29 | 22 | 6.8 | 209 | 23 | 22 | 7.0 | 8.09 | 38 | | | 3 | 22 | 7.3 | 9.17 | 29 | 22 | 7.3 | 8.11 | 29 | يد | 7.3 | 8.12 | 28 | _ | | 4 | 33 | ٠Ç _i | 8.11 | 29 | 32 | 1,8 | 8.13 | 30 | ಎ೩ | 47 | 8,14 | 30 | luh | | 5 | 22 | 6,6 | 8.35 | 30 | 22 | 5.6 | 8.08 | 30 | 22 | 6.5 | 8.30 | 30 | KAS | | 6 | 22 | 6.9 | 8.29 | 30 | 22 | 7,0 | 8.28 | 29 | 22 | 7.0 | 8.27 | 29 | _ | | 7 | 22 | 7.0 | 8.27 | 29 | 22 | 7.0 | 8.24 | يمر | 22 | 7.0 | 8.23 | 29 | _ | | 8 | 21 | 7.2 | 8.07 | 28 | 21 | 7.2 | 8.22 | 28 | 21 | 7.2 | 8.23 | 29 | | | 9 | ત્રે ! | 25 | 831 | ત્રવ | 21 | しつ | දිදුව | <u>څ</u> ک | 21 | أجآ | 832 | æ9 | W | | 10 | 9/ | ٥. ما | 839 | 30 | a۱ | ۱.عا | 839 | ક૦ | aı | ۱.ما | 835 | 30 | Ce | | # ALIVE | | 14 | | | | ١a | | | | 5 | | | | | DAY | | RE | PD | | | REI | PE | | | " | AMMON | Α• | | |---------|------|-----------|------|------|------|------|------|------|-----|--------------|-------|-----|------| | | TEMP | D.O. | pН | SAL. | TEMP | D.O. | рН | SAL. | Α | В | С | D | E | | 0 | 22 | 67 | 799 | 28 | 22 | 6.7 | 9.03 | 28 | 8 | 111 | 111 | 111 | 11/1 | | 1 | 22 | 15 | 799 | 31 | 22 | しら | 797 | 31 | | | | | | | 2 | ريد | 7.1 | 8.10 | 28 | 22 | 7.1 | 8.11 | 28 | | | | | | | 3 | 22 | 7.3 | 8.14 | 28 | 22 | 7.2 | 8.14 | 8 تو | | | | | | | 4 | ઢઢ | <i>US</i> | 9.13 | 29 | 32 | 59 | 814 | 29 | | | | | | | 5 | 22 | 6.6 | 8.32 | 30 | 22 | 6.6 | 8.24 | 30 | XES | | | | | | 6 | 22 | 7.0 | 8.27 | 29 | 22 | 7.0 | 8.26 | 29 | | | | | | | 7 | 22 | 7,0 | 8.26 | 29 | وزر | 7.0 | 8.26 | 30 | | | | | | | 8 | 21 | 7.2 | 8.30 | 27 | 21 | 7.3 | 8.21 | 27 | | | | | | | 9 | ی۱ | ر
ک | 833 | 25 | 3 | 9 | 834 | a8 | | | | | | | 10 | સ | نی | 836 | B | 8١ | 6.9 | 834 | 29 | Cd | | | | | | # ALIVE | | 3 | | | | 5 | - | | | | | | | ^{* -} Ammonia values on Day 0 were measured on the porewater. Ammonia on Days 5 and 10 were measured on the overlying water. | STUDY ; | ¥ 7814 – . | 3 | SAME | LE ID: | | | DILUE | NT: Ha | mpton | | T DATE | : | | |---------|------------|------|------|-----------|---------|----------|--------|------------------|-------|------|--------|------|----------| | | | | C- | 3-50 | E D- 51 | 18 | | Est | tuary | | | | | | DAY | | RE | РА | | | RE | PB | | | RI | EP C | | INITIALS | | | TEMP | D.O. | рН | SAL. | TEMP | D.O. | рН | SAL. | TEMP | D.O. | рH | SAL | | | 0 | 22 | 6.7 | 9.00 | 28 | 22 | 6.8 | 8.01 | 28 | 2) | 6.8 | 7.47 | 28 | ~ | | 1 | À | 1.5 | 195 | 31 | 22 | 4.6 | 796 | 31 | 22 | 10.6 | | 31 | R | | 2 | 22 | 7.0 | 8.10 | 29 | 22 | 7.1 | 8.03 | 29 | 22 | | | | | | 3 | 22 | 7.2 | Pos | | 22 | 7.2 | 8.02 | 38 | 22 | 7.1 | 7.77 | | | | 4 | 22 | (J.) | 807 | 29 | 22 | مایا | 8.05 | | 32 | . , | 8.01 | | ~ | | 5 | 22 | 6.7 | 8.07 | 30 | 22 | 6-7 | 7.92 | 30 | | 6.7 | 815 | | w | | 6 | 22 | 69 | 8.10 | 29 | | | | | 22 | | 7.98 | 30 | 763 | | 7 | 22 | | | | يد | 6.9 | 7.87 | | 22 | 6.9 | 7.87 | 27 | | | 8 | 21 | 7.2 | 7.94 | | 22 | 6.9 | 7.80 | 28 | 22 | 6.9 | 7,79 | 28 | | | 9 | 21 | 59 | | 21 | 21 | 7.7 | -i, 68 | | 21 | 7.1 | 2.7/ | २५ - | | | 10 | | 5.8 | | <u>29</u> | 21 | <u> </u> | 8.01 | ಶ _∈ । | 21 | 57 | 791 | 30 | uh | | # ALIVE | <u>a</u> 1 | 3.8 | 8.16 | 39 | ઢા | (b. \) | | 29 | 91 | 5.5 | 8.01 | 30 | Ce | | | | | | | | <u> </u> | | | | a | | İ | | | DAY | | RE | PD | | | RE | PE | | | | AMMON | ΙΔ• | | |---------|-----------|------|------|------------|--------|--------|------|----------|----|-----|-------|-----|-----| | | TEMP | D.O. | рН | SAL. | TEMP | D.O. | рH | SAL | A | В | С | В | E | | 0 | 22 | 6.8 | 298 | 28 | 22 | 6.9 | 7.66 | 28 | 1 | /// | 1// | /// | 117 | | 1 | 22 | [47 | 795 | 31 | જેત્રે | الميزا | 795 | 31 | | 107 | 777 | | | | 2 | 22 | 7.1 | 7,97 | 29 | 22 | 7.0 | 7.99 | 27 | | | | | | | 3 | 22 | 7.3 | 7.99 | 38 | 22 | 7.1 | 7,99 | 28 | | | | | | | 4 | 34 | 15 | 819 | 29 | 02 | ملنا | 8.16 | 30 | | | | | | | 5 | 22 | 6.7 | 8:02 | 30 | 22 | 6.8 | 8.01 | 30 | XB | | | | | | 6 | 22 | 7.0 | 7,93 | 29 | 22 | 7.1 | 7.93 | 30 | | | | | | | 7 | 22 | 7.0 | 7.79 | 28 | 22 | 7.0 | 7.82 | 28 | | | | | | | 8 | 21 | 7.2 | 7.84 | 29 | 21 | 7.1 | 7.85 | 27 | | | | | | | 9 | ઢા | tio | 790 | 3 0 | 31 | 58 | 755 | 30 | | | | | | | 10 | <i>ڪر</i> | 5.6 | 8.0\ | 30 | aı | | 8.03 | ga | 14 | | | | | | # ALIVE | | Ø | | | | | Ø | <u> </u> | - | | | | | Ammonia values on Day 0 were measured on the porewater. Ammonia on Days 5 and 10 were measured on the overlying water. | STUDY # | 7814 - 4 | | SAMP | | D-SM | P | DILUEI | NT: Han
Esti | npton
uary | START | DATE: | | | |---------|--------------------|------------|------|-----------|------------|-----------|--------|-----------------|---------------|--------|-------|----------------|----------| | DAY | | RE | | | | REF | В | | | RE | P C | | INITIALS | | | ТЕМР | D.O. | pН | SAL. | TEMP | D.O. | рН | SAL. | TEMP | D.O. | рН | SAL. | | | 0 | 22 | 6-1 | 766 | 30 | 22 | 61 | 7.90 | 30 | 22 | 66 | 7.92 | 30 | L | | 1 | $\partial \lambda$ | 5 9 | 792 | 33 | 23 | 10 | 15J | 33. | 33 | 10.2 | 795 | 33 | u | | 2 | 22 | 6.9 | 7.98 | 29 | 22 | 7.0 | 7,97 | 28 | 22 | 7.0 | 7.94 | 30 | _ | | 3 | 22 | 7.1 | 7,97 | 29 | 22 | 7.2 | 7.87 | 29 | 22 | 7.3 | 7.86 | ود | ~ | | 4 | 22 | آ. ما | 806 | 29 | 22 | 7.0 | 793 | ૂવ | 94 | 4 | 19i | 30 | lil | | 5 | 22 | 6.7 | 2.95 | 30 | 22 | 6.8 | 7.91 | 30 | 22 | 6.8 | 7.90 | 30 | KIL | | 6 | 32 | 6.9 | 7,89 | 29 | 22 | 7.0 | 7.80 | 28 | عدر | 7.1 | 7,79 | 29 | | | 7 | 22 | 7.0 | 7.70 | 29 | 2 تر | 7.0 | 7.70 | રક | 12 | 7.1 | 7.71 | 29 | _ | | 8 | 21 | 7.3 | 7.54 | 29 | 21 | 7.3 | 7.71 | 29 | 21 | 7.3 | 7.70 | I | cu | | 9 | 21 | 62 | 788 | 28 | 21 | 63 | 780 | æ | એ I | لمما | 733 | N | W | | 10 | <u>a</u> ı | (e.0 | 7.81 | 29 | <i>a</i> ı | 0.0 | 789 | 29 | aι | 6.3 | 7.89 | a _વ | C | | # ALIVE | | \ | 7 | | | \ <u></u> | λ | | ١ | \neg | | | | | DAY | | RE | PD | | | REF | , E | | | | AMMON | Α. | | |---------|------------|------|------|--------------|------|------|------|------|------|-----|-------|----|-----| | | TEMP | D.O. | рН | SAL. | TEMP | D.O. | pН | SAL. | A | В | С | D | E | | 0 | 22 | 68 | 786 | 30 | 22
| 6.8 | 783 | 30 | 7 | (11 | | 16 | 101 | | 1 | 32 | 130 | 794 | 33 | ನಿತ | S | TAI | 33 | | | | | | | 2 | يرد | 7.0 | 7.93 | 30 | 22 | 7.0 | 7.88 | 29 | | | | | | | 3 | يد | ٦٠١ | 7.87 | 28 | 22 | 7.2 | 7.83 | 27 | | | | | | | 4 | <u> </u> એ | مارا | 796 | 29 | 32 | ક્રિ | 797 | 29 | | | | | | | 5 | 22 | 6.8 | 2.81 | 30 | 22 | 6.8 | 7.80 | 30 | 2028 | | | | | | 6 | 22 | 7.1 | 7.80 | <i>ટ્ર</i> ૧ | 22 | 7.1 | 7,77 | 28 | | | | | | | 7 | 22 | 7.0 | 7.70 | 29 | 22 | 7.0 | 7.59 | 29 | | | | | | | 8 | 21 | 7.3 | 7,61 | 50 | 21 | 1,3 | 7.79 | 31 | | | | | | | 9 | 91 | しる | 7.79 | 29 | 31 | la | 1.82 | 30 | | | | | | | 10 | 21 | 63 | 7:34 | 29 | 21 | 53 | 789 | 30 | Ct | | | | | | # ALIVE | | | 9 | | | 1 | ھــ | | | | | | | ⁻ Ammonia values on Day 0 were measured on the porewater. Ammonia on Days 5 and 10 were measured on the overlying water. | STUDY # | 7814 - 5 | 5 | SAMP | • | ED-51 | чР | DILUE | NT: Ha
Est | mpton
uary | STAR | T DATE: | | | |---------|----------|--------|------|------|-------|-------|-------|---------------|---------------|------|----------|-----|----------| | DAY | | RE | PA | | | RE | PB | | | RE | EP C | | INITIALS | | | TEMP | D.O. | рН | SAL. | TEMP | D.O. | рН | SAL. | TEMP | D.O. | рH | SAL | | | 0 | 32 | 6.6 | 800 | 28 | 22 | 6.6 | 8.B | 28 | 22 | 66 | 7.78 | 28 | × | | 1 | એ | 14 | 791 | 30 | 22 | 1,4 | 797 | 30 | 94 | 105 | 800 | 3.5 | 111 | | 2 | 22 | 6.8 | 8.12 | 30 | 22 | 7.0 | 8.12 | 29 | 22 | 7.1 | 8.13 | 30 | | | 3 | 22 | 7.4 | 8.06 | 28 | 22 | 7.4 | 8.12 | 28 | ے درے | 7.3 | 8.14 | عد | | | 4 | र्ग | 19 | 791 | 30 | طائم | کی وا | 790 | 24 | 42 | 4.8 | 7.85 | 30 | ul | | 5 | .22 | 6.8 | 8.31 | 30 | 22 | 6.8 | 8.26 | | 22 | 6.8 | 8.25 | 30 | 265 | | 6 | 22 | 6,9 | 8.18 | 28 | 22 | 7.0 | 9.23 | 28 | 22 | 7. l | 8.23 | | /(n2 | | 7 | 22 | 6.9 | 2.20 | ~?દ | ج چھ | 7.0 | 8.21 | | 20 | 7.0 | 8.19 | 29 | | | 8 | 2(| 7.4 | 8.19 | 28 | 21 | 7.3 | | | 21 | 7.2 | 8.15 | 70 | Cu | | 9 | 31 | گاکورن | 823 | 30 | જી 1 | 15 | 820 | | 21 | لدله | 825 | જ | w | | 10 | 21 | ١.عا | 829 | 30 | a١ | 60 | 78.8 | | 21 | | 8.24 | 30 | CA | | # ALIVE | | 15 | 5 | | | ١٧ | | | | 14 | <u> </u> | | | | DAY | | RE | PD | | | RE | PΕ | | | | AMMON | ΙΑ• | | |---------|------------|------|------|--------|------|-------------|------|------|------|-----|-------|-----|----| | ļ | TEMP | D.O. | Hq | SAL. | TEMP | D.O. | рН | SAL. | Α | В | С | D | E | | 0 | 22 | 6.5 | 8.03 | 28 | 22 | 6.6 | 8.02 | 28 | 8 | 111 | // | 116 | 22 | | 1 | <i>3</i> 2 | 162 | 801 | 3.1 | m | 10.1 | 8.00 | 31) | | | | 20 | | | 2 | رر | 7.0 | 2.11 | 29 | 22 | 7.0 | 8.09 | | | | | | | | 3 | ور | 7.3 | 2.12 | ٤ړ | دو | ٦.١ | 8.09 | | | | | | | | 4 | 32 | 19 | 780 | 30 | 22 | ا بحن | 781 | 30 | | | | | | | 5 | 22 | 6.8 | 8.20 | 30 | 22 | 6.3 | 7.96 | 30 | XIIS | | | | | | 6 | 22 | 7.1 | 2,19 | 28 | 22 | 7.1 | 8.09 | 30 | | | | | | | 7 | 22 | 7.0 | 8.19 | 28 | 22 | 6.9 | 8.05 | | | | | | | | 8 | 21 | 7,1 | 8.13 | R
R | 21 | 31 | 8.08 | 32 | | | | | | | 9 | 12. | l05 | 718 | ત્રવ | 21 | <i>احوا</i> | | 35 | | | | | | | 10 | <i>a</i> \ | 6.4 | 8,25 | 29 | ವಿ। | 6.2 | 8.18 | 30 | Cá | | | | | | # ALIVE | | 5 | | | | 5 | - | | · | | | | | Ammonia values on Day 0 were measured on the porewater. Ammonia on Days 5 and 10 were measured on the overlying water. | STUDY # | 7814 - (| - | SAMP | LE ID: | D-5M | ۱۴ | | NT: Hai | | | T DATE: | |] | |---------|----------|---------------|----------|--------|------|------|------|---------|------|------|---------|----|----------| | DAY | | RE | P A | | | REI | P 8 | | | RE | P C | | INITIALS | | | TEMP | D.O. | рН | SAL. | TEMP | D.O. | рН | SAL. | TEMP | D.O. | 1 | | | | 0 | 22 | 6.7 | 8.03 | | 22 | 6.7 | 8.06 | | 22 | 6.8 | 9.02 | 29 | 8 | | 1 | રૂઢ | 15 | 797 | 30 | 33 | 15 | 799 | 30 | 22 | 4 | 7.99 | 30 | 111 | | 2 | 22 | 6.6 | 8.08 | | 22 | 6.8 | 8.05 | 29 | 22 | 6,9 | 8.03 | | 200 | | 3 | 32 | 7.3 | 8.05 | | 22 | 7,4 | 8.08 | 28 | 22 | 7.4 | 8.07 | 28 | | | 4 | તેઠ | 70 | 315 | Z. | 22 | 7.0 | 8.17 | 29 | 32 | 69 | 815 | | KL | | 5 | 22 | 6.6 | 8.08 | 30 | 22 | 6.7 | 8.11 | 30 | 22 | 6.8 | 8.17 | 30 | XRS | | 6 | 22 | ٦٫٥ | 8.09 | 29 | 22 | 7.0 | 8.09 | 30 | 22 | 7.1 | 8.14 | 29 | ~ | | 7 | 22 | 6.8 | 8.08 | 3c | 22 | 6.9 | 8.03 | 29 | ري | 6.9 | 8.08 | | 1 | | 8 | 21 | 7.4 | 8,07 | 30 | 21 | 73 | 7.93 | 30 | 21 | 7.2 | 8.12 | 30 | cw | | 9 | 21 | لەن | 323 | ,29 | 21 | 55 | SDIC | 30 | .21 | しつ | 824 | æ | W | | 10 | aı | 62 | 882 | 29 | 97 | 6.\ | 8.11 | 30 | aı | 6.0 | 8.26 | ଥଦ | CE | | # ALIVE | | 10 | <u> </u> | | | 12 | | | | 10 | | | | | DAY | | RE | PD | | | RE | ۶ E | | | | AMMON | IA* | | |---------|------|------|------|------------|------------|------|------|------------|-----|-----|-------|-----|-----| | | TEMP | D.O. | рH | SAL. | TEMP | D.O. | рН | SAL. | Α | В | С | D | Е | | 0 | 22 | 6.8 | 7.96 | 29 | a2 | 67 | 8.00 | 29 | L | 111 | // | /// | 111 | | 1 | 98 | 13 | 103 | 30 | 32 | 1,2 | 7A6 | 30 | | | | | | | 2 | 22 | 6.9 | 8.06 | 29 | .32 | 6.9 | 8.05 | 30 | | | | | | | 3 | 22 | 7.4 | 8,07 | 28 | در | 7.5 | 8.01 | 29 | | | | | | | 4 | 37 | la | 814 | 28 | એ | 68 | 806 | 29 | | | | | | | 5 | 22 | 6.8 | 8,01 | 30 | 22 | 6.7 | 8.05 | | KEB | | | | | | 6 | 22 | 7.0 | 8.00 | 29 | 22 | 7.0 | 7.98 | 30 | | | | | | | 7 | ور | 6.9 | 7.93 | <i>3</i> 0 | 22 | 6.9 | 7.87 | 29 | | | | | | | 8 | 21 | 7.2 | 7.97 | 30 | 21 | 7.3 | 7.96 | 31 | | | | | | | 9 | ગ | 58 | 816 | 30 | <i>ي</i> ر | 51 | 8.10 | 29 | | | | | | | 10 | ઢા | ٥.0 | 8.15 | 30 | a.i | 5.9 | 8.13 | a 9 | (d) | | | | | | # ALIVE | | _ 7 | | | | ٦ | | | | | | | | ⁻ Ammonia values on Day 0 were measured on the porewater. Ammonia on Days 5 and 10 were measured on the overlying water. | STUDY : | † 7814 – | 7 | SAMP | LE ID: | | | DILUE | NT: Ha | mpton | | T DATE | | | |---------|---------------------|-------------|------|------------|------|-------|--------------|--------------------------------|-----------|------|--------------|-------------|-------------| | | | | | D.4. 5 | こり-5 | MP | | Es | tuary | | | | | | DAY | | RE | PA | | | RE | P B | | | R | EP C | | INITIALS | | | ТЕМР | D.O. | рH | SAL. | TEMP | D.O. | pН | SAL. | TEMP | D.O. | рН | SAL | | | 0 | 22 | 66 | 804 | 29 | 22 | 6.6 | 8.01 | 29 | 22 | 6.6 | 7.98 | 29 | | | 1 | 99 | 41 | 835 | 30 | 22 | 1.5 | 807 | .30 | ッツ | 57 | 807 | | X | | 2 | 22 | 6.5 | 8,25 | 30 | 22 | 6.7 | 8.25 | 29 | 22 | 6.8 | 8.24 | 29 | 110 | | 3 | 22 | 7.3 | 8.30 | | 22 | 7.3 | 8.31 | 28 | 22 | 7.4 | | | · | | 4 | 22 | 69 | 8.55 | <i>3</i> ઇ | 92 | i.4 | 8,39 | عة
3ì | 32 | | 8.31 | 28 | <u> </u> | | 5 | 22 | 6.7 | 8.44 | 30 | 22 | 6.7 | 8.43 | 30 | 22 | 6.6 | 8.40 | 30
30 | XXS | | 6 | 22 | 6.8 | 8.42 | 30 | 22 | 10 | 2.41 | 29 | 22 | | | | /C&25 | | 7 | 22 | 4.7 | 8:36 | ,29 | 22 | 6.8 | | | | 6.9 | 8.40 | 30 | | | 8 | 21 | 73 | 8.33 | 3) | 21 | 7.3 | 8.37
8.35 | 28 | 21. | 6.8 | 2.35 | 39 | | | 9 | 21 | 1,0 | 847 | 29 | 21 | | | | | 7.3 | 834 | 30 | Cay . | | 10 | 21 | 5.6 | | | | (0,2_ | 848 | : ₂)C ₁ | 91 | (81 | SAS | 30 | UL | | # ALIVE | | ع.و
إبرا | 8,44 | 29 | aı | 5.8 | 8.50 | 89 | <u>g/</u> | | 8.47 | 89 | a | | | | | | | | 16 | | | | - \ | ೩ | | 加 | | DAY | | RE | PD | | | RE | PE | | | | AMMON | ΙΔ* | | |---------|------|------|-------------|------|-------------|------|------|------|-----|-----|-------|-----|----| | | TEMP | D.O. | На | SAL. | TEMP | D.O. | рH | SAL. | A | В | С | В | E | | 0 | 22 | 6.6 | 7.97 | 29 | 22 | 6-5 | 7.97 | 29 | 5/ | 111 | // | 1/2 | 11 | | 11 | aa | L3 | 805 | 31 | <u>ನಿ</u> ೩ | 6.1 | 805 | 30 | | 166 | 00 | | | | 2 | 22 | 6.8 | 8,23 | 29 | 22 | 6,9 | 8.23 | 30 | | | | | | | 3 | 22 | 7.5 | 8.31 | 27 | 22 | 7.4 | 8.31 | 29 | | | | | | | 4 | 32 | 801 | 835 | 35 | 22 | 6.8 | 8.37 | 31 | | | | | | | 5 | 22 | 6.6 | 8,43 | 30 | 22 | | 8,48 | 30 | XB | | | | | | 6 | 22 | 7.0 | 8.40 | 28 | 22 | 7.0 | 8.43 | .30 | | | | | | | 7 | 22 | 6.8 | 8.40 | 28 | 22 | 6.8 | 8.41 | 3c | | | | | | | 8 | 21 | 23 | 8.8 | 70 | 21 | 7.2 | 8.45 | 31 | | | | | | | 9 | 91 | 62 | 75 3 | 35 | ا(ه | 100 | 84 | 3i | | | | | | | 10 | 21 | ٥٠عا | 854 | 30 | 81 | | 854 | 30 | (A) | | | | | | # ALIVE | | | 11 | | | 4 | | | | | | | | ^{* -} Ammonia values on Day 0 were measured on the porewater. Ammonia on Days 5 and 10 were measured on the overlying water. ## Ampensca aporta CHRUNIC EXPOSURE SEDIMENT ASSAY | STUDY ; | ≠ 7814 - · | ४ | SAMP | LE ID: | | | DILUE | NT: Ha | | STAR | T DATE: | | <u> </u> | |---------|-----------------------|------|------|-------------------|------------|------|----------------|----------|-------|---------------|--------------|------------------|----------| | | | | 1 | 0-5. 5 | 5ED.5 | MP | | ES | tuary | | | | | | DAY | | RE | PA | | | RE | PB | | | R | EP C | | INITIALS | | | ТЕМР | D.O. | рН | SAL. | ТЕМР | D.O. | pН | SAL. | TEMP | D.O. | pH | 641 | | | 0 | 22 | 6.5 | 7.85 | 29 | 22 | 65 | 7.96 | 29 | 22 | 66 | 7.87 | 29 | X | | 1 | 33 | La | Kin3 | 33 | 27 | 104 | 797 | ŝ١ | 23 | loA | TH | | - | | 2 | 22 | 6.6 | 217 | 29 | 22 | 6,7 | 8.16 | 27 | 22 | 6.8 | 8.09 | | lil. | | 3 | 22 | 7.3 | 8,8 | 28 | 22 | 7.4 | 8.17 | 24 | 22 | 7.4 | 8.18 | | | | 4 | 32 | is | 831 | 29 | J.A. | 68 | 8.17 | ગ્રુલ | 32 | 6.8 | 8.72 | 28
25 | KL. | | 5 | 22 | 6.5 | 8.36 | 30 | 22 | 6,5 | 8.29 | 30 | 22 | 6.6 | 8,31 | 30 | XRB | | 6 | 22 | 6.7 | 8.31 | 29 | 22 | 6,9 | 8.23 | | 22 | 7.0 | | | 70123 | | 7 | 22 | 6.8 | 8.12 | 29 | 22 | 6.8 | 8.15 | 29 | 22 | | 8.24 | 9 تر | | | 8 | 21 | 7.4 | 8,09 | 29 | 21 | 7.3 | 8,11 | 31 | 21 | 6.9
7.4 | 8.15
8.12 | <i>র</i> १
3০ | | | 9 | સા | 40 | 93A | 38 | Δ٦ | رين | 835 | 29 | 2 | "/ | 824 | | Cir/ | | 10 | ઢા | 5.8 | 8.30 | 28 | <i>a</i> 1 | = . | 827 | 28 | aı | | | <u>અ</u>
a9 | lih | | # ALIVE | | 12 | | | | 17 | <u>- v. 11</u> | <u> </u> | ~(| 10 | 2.06 | <u>u 0</u> | | | DAY | | RE | PD | | Γ | RE | PE | | Ţ | | | | | |---------|------|------|--------------
------|--------|-------|-------------|------------|---------------|-------------|--------|---------|-----| | <u></u> | TEMP | D.O. | рН | SAL. | TEMP | D.O. | | T | | | AMMONI | A* | | | 0 | aλ | 6.6 | 7.88 | 29 | 22 | 6.5 | 7.97 | SAL | 7 | /// | _ c | D / / / | E | | 1 | J.a | 63 | | 30 | 2
2 | رجياً | 798 | 3) | a | 1 2 7 | (| 111 | 1// | | 2 | 22 | 6,8 | 8.09 | 30 | 22 | 4.8 | 8.08 | | | | | | | | 3 | .22 | 7.3 | 8.15 | 28 | 22 | 7,3 | 8.09 | 29 | | | | | | | 4 | n. | ط.ها | 8.21 | 28 | 22 | 4 ا | 8.15 | | | | | | | | 5 | 22 | 6.6 | 8.29 | 30 | 22 | 6.6 | 8.36 | 30 | XRD | | | | | | 6 | 22 | 7.0 | 8.25 | 29 | 22 | 6.9 | 8.23 | 30 | | | | | | | 7 | 22 | 6.8 | 8.17 | 28 | 22 | 6.8 | 8,15 | 30 | | | | | | | 8 | 21 | 7.5 | 8.11 | 33 | 21 | 7.2 | 9,14 | 31 | | | | | | | 9 | 9) | 60 | 821 | 30 | 7 | (02 | १२० | <u>څ</u> (| | | | | | | 10 | 21 | 0.0 | 82 | 29 | a۱ | 6.1 | 821 | ga | C. | | | | | | # ALIVE | | 12 | | | | 18 | | <u> </u> | | | | | | ^{* -} Ammonia values on Day 0 were measured on the porewater. Ammonia on Days 5 and 10 were measured on the overlying water. | CT. ID. | | ~!!! | henoce | anuii | ia CUK | UNICE | スという | UKE S | EDIME | NT AS | SAY | | | |---------|-----------------|--------|--------|-----------|--------|-------|--------|--------|-----------------|-------|---------|-----------|------------| | STUDY # | ‡ 7814 — | ٩ | SAMP | LE ID: | | | DILUE | NT: Ha | | STAR | T DATE | : | | | | | | 2 | ٠-6- | SED | -5 mg | | ES | tuary | | | | | | DAY | | RE | PA | | | RE | P B | | | R | EP C | | INITIALS | | ļ | TEMP | 0.0 | рH | SAL. | TEMP | D.O. | Нα | SAL. | TEMP | D.O. | рН | SAL | 1 | | 0 | 21 | 6.6 | 8.04 | 29 | 21 | 6.5 | 801 | 29 | 21 | 6.8 | 8.02 | | 2 | | 1 | 33 | 101 | 793 | 31 | シス | 6.1 | 800 | 31 | 23 | (,4 | 795 | 31 | 46 | | 2 | 22 | 6.4 | 207 | <i>3c</i> | رو | 6,6 | 8.08 | 30 | 22 | 6,9 | 8.11 | 30 | UL | | 3 | ود | 7.3 | 8.04 | 28 | عص | 7.4 | 8.11 | 28 | 32 | 7.4 | 8.12 | 29 | | | 4 | ોઢ | LA. | 808 | 30 | da | 65 | 812 | 29 | 22 | 1.4 | 8.15 | 29 | 112 | | 5 | 22 | 6.1 | 8.13 | 30 | 22 | 6.5 | 8.18 | 30 | 22 | 6.6 | 8,26 | 30 | XES | | 6 | 22 | 6.5 | 8.10 | 29 | 22 | 6.8 | 8.10 | 30 | 22 | 6.9 | | 30 | ~~~
~~~ | | 7 | 72 | 6.6 | 7.49 | ЗΊ | 22 | 6.7 | 7.95 | 38 | 22 | 6.9 | 8.19 | | | | 8 | 21 | 7.3 | 306 | 29 | 21 | 7.4 | 800 | 31 | 21 | | 8,25 | 28
30 | ے
دش | | 9 | 31 | ر
د | 815 | 30 | 21 | ري | 3.11.8 | 31 | 21 | 62 | 8416 | 32 | | | 10 | 21 | 7 | 0 - 1 | 20 | | 5 1 | V.,.~ | 00 | -~ - | 0.5 | الم الم | <u>⊃~</u> | hh | | DAY | <u></u> | RE | PD | | | RE | PE | | | | AMMON | Α• | | |---------|-------------|------|--------|------------|------|------|------|------|---------|-----|-------|--------|-----| | | TEMP | D.O. | pН | SAL. | ТЕМР | D.O. | рН | SAL. | A | В | С | D | E | | 0 | 22 | 10.8 | 8.00 | 29 | 21 | 4.8 | 7.96 | 29 | 8 | 1// | 16 | 7./. / | /// | | 1 | <i>3</i> 2A | 63 | 802 | 31 | 22 | 6.2 | 873 | 31 | | | | 7.2.0 | | | 2 | 22 | 6.9 | 811 | 30 | 22 | 7.1 | 8.13 | 30 | | | | | | | 3 | 22 | 7.4 | 2.13 | 23 | 22 | 7.4 | 8.08 | 30 | | | | | | | 4 | NA. | LIL | 8.17 | 29 | એ | 1:58 | 8.15 | A | | | | • | | | 5 | 22 | 6.6 | 8.21 | 30 | 22 | 6.6 | 8.25 | 30 | KES | | | | | | 6 | 22 | 6.9 | 8.19 | <i>3</i> 0 | 22 | 7.0 | 8,18 | 30 | | | | | | | 7 | 22. | 6.8 | . 8.16 | 28 | ورو | 6.8 | 813 | ص3ـ | | | | | | | 8 | 21 | 7.4 | 5,50 | 31 | 21 | 7,3 | 8.21 | 71 | | | | | | | 9 | ગો | しろ | क्या | 3i | 21 | 104 | 856 | 30 | | | | | | | 10 | 21 | 0,0 | 860 | 30 | 16 | 6.8 | 863 | 30 | <u></u> | | | | | | # ALIVE | | ф | | | | 6 | | ~ | | | | | | # ALIVE ⁻ Ammonia values on Day 0 were measured on the porewater. Ammonia on Days 5 and 10 were measured on the overlying water. | Ampensca apolia CHRONIC | EXPOSURE SEDIMENT ASSAV | |-------------------------|--------------------------| | | EXI COURE SELIMENT ACCAS | | | | | Pensca | anuli | a Chr | ONIC E | XPUS | UKE S | EDIME | NT AS | SAY | | | |---------|-------------|------|--------|------------|-------|--------|----------|--------|------------|-------------|--------|-----------|------------| | STUDY ; | ¥ 7814 – į | 10 | SAMP | LE ID: | ED - | | | NT: Ha | | | T DATE | : | | | | ī — | | - | | | | <u> </u> | | | <u> </u> | | | | | DAY | | RE | EP A | | | RE | PB | | | R | EP C | | INITIALS | | | TEMP | D.O. | рн | SAL. | TEMP | D.O. | рН | SAL. | TEMP | D.O. | рН | SAL. | 3
 | | 0 | 21 | 6.7 | 8.64 | 28 | 21 | 6.7 | 800 | 28 | 21 | 68 | 8.03 | 28 | . X | | 1 | ડેટ | 14 | 7.78 | 29 | 072 | 1,2 | FFE | 37 | તૈર | (0) | 8.00 | | 1el | | 2 | 22 | 6,5 | 7.97 | 29 | 22 | 6.7 | 7.93 | 29 | 22 | 70 | 8.02 | | <u> </u> | | 3 | 22 | 7.2 | 8.06 | 26 | 22 | 7.4 | 8.04 | | 22 | 7.4 | 8.03 | i | | | 4 | 22 | 7.0 | 794 | 30 | 33 | 7.2 | 7.99 | 29 | 22 | 4.8 | 798 | 30 | <u>u</u> _ | | 5 | 22 | 6.4 | 7.89 | 30 | 22 | 6.8 | 8.00 | 30 | 22 | 6.9 | 8.02 | 30 | KES | | 6 | 22 | 6.8 | 7.93 | 28 | 22 | 6.8 | 8.00 | 28- | 22 | 6.9 | 8.00 | | - | | 7 | 22 | 6,7 | 7.96 | <i>3</i> 8 | 22 | 6.8 | 7.86 | l 1 | 22 | | | | | | 8 | 21 | 7.1 | 7,73 | 30 | 21 | 7.3 | 7.90 | | 51 | 6.9
7.3 | 7.26 | | | | 9 | એ ! | 58 | 8113 | ત્રંવ | 21 | لىن | 818 | | ر
ا لار | Lel | 806 | | Uh | | 10 | aı | ۱.ع) | 8.11 | 29 | aı | 5.8 | | 29 | | 6.0 | 8.06 | | Co | | # ALIVE | | 2 |) | | | | 0 | | | |)
) | <u>50</u> | 7_ | | DAY | | RE | PD | | | RE | PE | | T | | AMMON | IA. | | |---------|----------|------|------|------|-------------|--------------------|------|------------|-----|----|-------|-----|-------------| | | TEMP | D.O. | рН | SAL. | ТЕМР | D.O. | рН | SAL. | A | В | C | Б | | | 0 | (چ | 6.8 | 7.99 | 28 | 72 | 6.8 | 7.96 | 28 | 8 | // | /// | /// | E | | 1 | <i>≩</i> | (,1 | 804 | 39 | <i>6</i> 8. | LA | 804 | 29 | | // | 2 7 5 | | | | 2 | 22 | 6,9 | 8.05 | _3c | 22 | 7.1 | 8.05 | 1 | | | | | | | 3 | 22 | 7.4 | 8.03 | 28 | 22 | 7.5 | 8.02 | | | | | | | | 4 | 22 | 1.8 | 799 | 30 | 22 | V3 | 7.92 | 29 | | | | | | | 5 | 22 | 6.8 | 8.02 | 30 | 22 | 6.9 | 8.01 | 30 | XIB | | | -// | | | 6 | 22 | 7.0 | 8.00 | 28 | 22 | 7,0 | 7.95 | 29 | | | | | | | 7 | 22 | 7.0 | 7.92 | 30 | 22 | 6.9 | 7.92 | 3c | | | | | | | 8 | 121 | 7.4 | 7.92 | 30 | 21 | 7.4 | 7.88 | 31 | | | | | | | 9 | 21 | しい | in5 | 3 | ે । | 42 | 80A | <u>3</u> ر | | | | | | | 10 | 21 | 1.0 | 805 | 29 | 31 | 6.2 | 8.04 | 29 | C | | | | | | # ALIVE | | 6 |) | | | $\widehat{\Omega}$ | | | | | | | | ^{&#}x27; - Ammonia values on Day 0 were measured on the porewater. Ammonia on Days 5 and 10 were measured on the overlying water. | STUDY # | 7814 - \ | \ | SAMPI | |) - SM | P | DILUE | NT: Hai
Est | mpton
uary | STAR | T DATE: | | | |---------|----------|------|-------|-----------------|--------|------|-------|----------------|---------------|------|----------|----------|----------| | DAY | | RE | PA | | | RE | P B | | | RE | PC | | INITIALS | | | TEMP | D.O. | ρН | SAL. | TEMP | D.O. | рН | SAL. | TEMP | D.O. | рН | SAL. | | | 0 | 21 | 67 | 242 | 27 | 21 | 6.8 | 7.09 | 27 | 21 | 6.8 | 7.29 | 27 | se | | 1 | 97 | ليكم | 787 | 35 | 333 | 1.4 | 765 | 39 | લેક | L4 | 762 | 29 | ich | | 2 | 22 | 7.0 | 2.02 | 30 | 22 | 7.1 | 7.53 | 26 | 22 | 7,2 | 7.51 | 27 | | | 3 | 22 | 7,3 | 7.96 | 26 | 22 | 7,4 | 7,46 | 26 | 22 | 7.5 | 7,44 | | - | | 4 | 4.2 | 1,14 | 7.74 | <u>ي</u>
مال | 22 | 42 | 7.57 | 27 | 33 | 43 | 749 | 26 | 116 | | 5 | 22 | 6.5 | 2.42 | 30 | 22 | 6.8 | 7,25 | 30 | 22 | 6.9 | 2.37 | 30 | XFS | | 6 | 22 | 6.2 | 7,23 | 27 | 22 | 6.7 | 7.23 | 27 | 22 | 6.9 | 7.33 | 27 | | | 7 | 22 | 6.7 | 7.53 | 37 | 22 | 6.8 | 7.47 | 26 | 22 | 6.9 | 7,36 | | _ | | 8 | 21 | 7.0 | €.29 | H | 21 | 7,2 | 6.54 | 27 | 21 | 7,5 | 6.84 | 27 | | | 9 | аï | しら | 768 | 27 | a . | しら | 7.49 | .37 | ગ | 4.0 | 743 | 27 | lih | | 10 | 21 | 5.7 | 7.42 | 28 | â١ | ۱.ها | 733 | ನ್ನ | 21 | 62 | 721 | a٦ | Ü | | # ALIVE | | | 11 | | | 14 | | | | 15 | <u> </u> | <u> </u> | | | DAY | | RE | PD | | | RE | PE | | | | AMMONIA* B C D E | | | | |---------|---------|------|----------|------|-------|------|------|------|-----|----|-------------------|----|----|--| | | TEMP | D.O. | рH | SAL. | TEMP | D.O. | рН | SAL. | Α | В | С | D | E | | | 0 | 21 | 6.7 | 7.26 | 27 | 21 | 6.8 | 7.51 | 27 | L | // | // | // | // | | | 1 | 22 | 5 | 75% | 29 | ત્રત | جارا | 755 | 39 | | | | | | | | 2 | 22 | 7.1 | 752 | ่สา | 22 | 7.1 | 7.54 | 28 | | | | | | | | 3 | 22 | 75 | 7.46 | 26 | 22 | 7.5 | 7.44 | 26 | | | | | | | | 4 | ત્રેત્ર | 4 | 7.48 | 20 | ત્રેઠ | 1,5 | 7.44 | مكو | | | | | | | | 5 | 22 | 6.8 | 7.6.93 | 30 | 22 | 6.8 | 2.40 | 30 | KKS | // | // | // | // | | | 6 | 22 | 6.7 | 7.34 | 27 | 22 | 6.8 | 7.32 | 27 | | | | | | | | 7 | 22 | 6.7 | 7,34 | ٦٤ | 2,2 | 6.9 | 7.32 | 27 | | | | | | | | 8 | 21 | 7.3 | 6.76 | 28 | 21 | 7.3 | 6.88 | 28 | | | | | | | | 9 | 31 | 43 | 738 | 2 | ત્ર | 42 | 734 | 28 | | | | | | | | 10 | 37 | 59 | | 27 | 21 | 5.9 | 7&5 | 28 | Ct | | | | | | | # ALIVE | | (| <u>}</u> | | | 14 | | | | | | | | | ^{* -} Ammonia values on Day 0 were measured on the porewater. Ammonia on Days 5 and 10 were measured on the overlying water. X X See Mis Doc. 1/28N | STUDY # 7814 - 12 SAMPLE ID: | | | | | | | | | | | | | | |------------------------------|---------------------------------|--|--|--|--
---|--|---|---|---|---|--|--| | | | E · | 2 - S c | D·SH | 1P | | | | | | | | | | | RE | PA | | | | INITIALS | | | | | | | | | ТЕМР | D.O. | рН | SAL. | ТЕМР | D.O. | рН | SAL. | TEMP | D.O. | рН | SAL | | | | 21 | 2.3 | 6.52 | 28 | 21 | 3.1 | 6.52 | 28 | 21 | | | | × | | | 23 | 7.0 | 75% | 3) | જે | 73 | 754 | | | <u> </u> | | | <u>a</u> | | | 22 | 6.7 | 7.56 | 27 | | 7.0 | | | | | | $\overline{}$ | | | | 22 | 7.4 | 7,44 | 26 | 22 | 75 | 731 | | | | | | | | | 24 | 58 | 740 | | 22 | | | | | | | |
i.1 | | | 22 | 6.9 | 7.07 | 30 | 22 | | | | | | | | 121 | | | 22 | 6.7 | 7.39 | 27 | 22 | | | | | | | | KHI | | | | | | | | | | | | | | | | | | 21 | 7.6 | | | | | | | | | | | | | | 7 | اعر) | | | | | | | | | | | Cos | | | | | | | | , | | | | | | | 14 | | | | | | ~ | <u> </u> | | |
<u>م ۱</u> | <u>al</u> | (e.4) | 137 | 98 | 84 | | | | TEMP 21 22 22 22 22 22 21 21 21 | TEMP D.O. 21 2.3 22 7.4 22 6.7 22 6.7 22 6.7 22 6.7 21 7.6 21 7.6 21 44 21 6.4 | REPA TEMP D.O. DH 21 2.3 6.52 32 7.4 7.56 22 7.4 7.44 31 1/8 740 22 6.7 7.39 22 6.7 7.35 21 7.6 6.89 21 1/4 741 | REPA TEMP D.O. DH SAL 21 2.3 6.52 28 22 1.0 756 37 22 7.4 7.44 36 22 6.9 7.07 30 22 6.7 7.39 27 22 6.9 7.35 27 21 7.6 688 27 21 6.4 735 87 21 6.4 735 87 | REPA TEMP D.O. DH SAL TEMP 21 2.3 6.52 28 21 22 7.4 7.56 27 22 22 7.4 7.44 26 22 24 6.7 7.56 27 22 24 6.7 7.36 27 22 24 6.7 7.37 20 22 24 6.7 7.37 27 22 24 6.9 7.35 27 22 21 7.6 688 27 21 21 6.4 7.35 27 21 21 6.4 7.35 27 21 21 6.4 7.35 27 21 | REPA RE TEMP D.O. DH SAL TEMP D.O. 21 2.3 6.52 28 21 3.1 22 6.7 7.56 27 22 7.0 22 7.4 7.44 26 22 7.5 22 6.9 7.07 30 22 6.9 22 6.9 7.35 27 22 6.9 21 7.6 658 27 21 7.3 21 1.4 7.4 27 21 7.3 21 1.4 7.4 27 21 1.3 21 1.4 7.4 27 21 1.3 | REPA REPB TEMP D.O. DH SAL TEMP D.O. PH 21 2.3 6.52 28 21 3.1 6.52 22 7.4 7.56 27 22 7.0 7.54 22 7.4 7.44 26 22 7.5 7.31 22 7.4 7.44 26 22 7.5 7.31 22 6.7 7.39 27 22 6.9 7.42 22 6.9 7.35 27 22 6.9 7.34 21 7.6 688 2-7 21 7.3 6.93 21 1.4 7.4 27 21 7.3 6.93 21 1.4 7.4 27 21 7.3 6.93 | REPA REPB | REPA REPB | REP A REP B | REPA REPB REPC TEMP DO. DH SAL TEMP DO. DH SAL TEMP DO. DH 21 23 6.52 28 21 3.1 6.52 28 21 3.4 6.50 33 1.0 7.56 31 22 7.0 7.54 30 22 7.1 7.49 22 7.4 7.44 26 22 7.1 7.29 23 1.4 7.44 26 22 7.1 7.29 24 6.7 7.56 27 22 6.9 6.95 30 22 6.9 6.95 25 6.9 7.35 21 22 6.9 7.42 21 22 7.0 7.43 26 7.35 21 22 6.9 7.34 21 22 7.0 7.43 27 6.9 7.35 21 22 6.9 7.34 21 22 7.0 7.43 28 6.9 7.35 21 21 7.3 6.93 21 21 7.7 6.93 29 6.4 7.35 21 21 7.3 6.93 21 21 7.7 6.93 20 6.4 7.35 21 21 7.3 6.93 21 21 7.7 6.93 | REPA REPB REPC REPCC RE | | | DAY | | RE | PD | | | RE | PE | | AMMONIA* | | | | | | |----------|------------|------|------|------|------|------|------|------|----------|----|---|----|-----|--| | <u> </u> | TEMP | D.O. | рН | SAL. | TEMP | D.O. | рН | SAL. | A | В | С | Б | E | | | 0 | 21 | 3.7 | 6.51 | 28 | 21 | 3.6 | 6.50 | 28 | 0 | 11 | 1 | // | /// | | | 11 | <i>∞</i> a | 7:5 | 745 | 30 | æ | 72 | 79, | 3() | 3 | | 7 | | | | | 2 | 22 | 7.0 | 7.45 | 26 | 22 | 7.0 | 7.43 | 1 | | | | | | | | 3 | 22 | 7.5 | 7.27 | 36 | .22_ | 7,5 | 7.24 | | | | | | | | | 4 | ZZ | 1/0 | | 25 | 32 | 65 | 7,28 | 92 | | | | | | | | 5 | 22 | 6.9 | 7.01 | 30 | 22 | 6.9 | 7.07 | 30 | KAS | | | | | | | 6 | 22 | 6.8 | 7.44 | 26 | 22 | 6,9 | 7.43 | 26 | | | | | | | | 7 | يور | 6.9 | 7,29 | 26 | ,22 | 6.8 | 7.29 | 27 | | | | | | | | 8 | n | 7.5 | 6.69 | 27 | 21 | 7.4 | 663 | 28 | | | | | | | | 9 | 31 | inA | 741 | 77 | 21 | 42 | 739 | 27 | | | | | | | | 10 | 2) | ٤.٤١ | 14. | 25 | ۵١ | 6.4 | 7.40 | |) d | | | | | | | # ALIVE | | 1 | | | | 8 | 10 | | <u> </u> | | | | | | Ammonia values on Day 0 were measured on the porewater. Ammonia on Days 5 and 10 were measured on the overlying water. See Min Go 4/200R | STUDY # | SAMPLE ID: DILUENT: Hampton Estuary START DATE: | | | | | | | ···· | | | | | | | |---------|---|------------|------|------|--------------|------|------|-------------|------|------------|--|------|-----|--| | DAY | | RE | PA | | | RE | PB | | | INITIALS | | | | | | | TEMP | D.O. | рН | SAL. | TEMP | D.O. | рН | SAL. | TEMP | D.O. | рH | SAL. | | | | 0 | ગ | 6.4 | 7.47 | 27 | 2 | 6.5 | 7.53 | 27 | 21 | 67 | 7.40 | 27 | 8 | | | 1 | -SS | 64 | 155 | A | <i>3</i> 33. | 63 | 757 | 29 | 3a | 15 | 7.51 | 29 | ul. | | | 2 | ورے | 6.9 | 7,44 | 27 | دد | 7.1 | 7.47 | 27 | 22 | 7.1 | 7,50 | | | | | 3 | 22 | 7,6 | 7.21 | 26 | 72 | 7.5 | 7.46 | 26 | 22 | 7,5 | 7,47 | 24 | *:: | | | 4 | 32 | <i>ایا</i> | 728 | ગેડ | 32 | 44 | 7,20 | λ . | અ | V 5 | 731 | 26 | uh | | | 5 | 22 | 6.9 | 7.26 | 30 | 22 | 6.9 | 2.25 | 30 | 22 | 6.9 | 2.29 | 30 | XAL | | | 6 | 22 | 7.0 | 7.56 | 22 | 22 | 7.0 | 7,56 | 28 | 22 | 7.1 | 7,57 | ٦٦ | ~ . | | | 7 | 22 | 6.7 | 7,27 | 7 | ورد | 6.9 | 7.46 | 28 | 22 | | 7.46 | | _ | | | 8 | 21 | 7.5 | 7.25 | 28 | 21 | 7,4 | 7.23 | 29 | 21 | 7,4 | 7,17 | | cr | | | 9 | 21 | 5 % | ાઝડ | ξŞ | ત્રા | 59 | 734 | 38 | ત્રા | 5.7 | 735 | ್ಞಾ | W_ | | | 10 | aı | 5.9 | 733 | 29 | a١ | 6.1 | 7.31 | 29 | aı | ۱,ع) | l | 29 | Ce | | | # ALIVE | | | 16 | , | | | 19 | | | - [1 | 7.0 7.46 27
7.4 7.17 28
5.7 755 29 | | | | | DAY | | RE | PD | | | RE | PΕ | | AMMONIA* | | | | | | |---------|-----------|------|-------|-------------|------|---------------|------|------|----------|----|----|------|-----|--| | | TEMP | D.O. | рН | SAL. | TEMP | D.O. | рН | SAL. | Α | В | С | В | E | | | 0 | 21 | 6.8 | 7.41 | 27 | 21 | 6.7 | 7.37 | 77 | 8 | // | // | /// | /// | | | 1 | 2a | 7.3 | عرکار | 3 | 22 | <i>હે</i> .જી | 751 | 379 | | | | | | | | 2 | 22 | 7.1 | 7,57 | 28 | 22 | 7.1 | 7.50 | 28 | | | | | | | | 3 | 22 | 7.3 | 7.47 | 26 | 22 | 7.4 | 7.45 | 26 | | | | - 14 | | | | 4 | 23 | 45 | 7.21 | عد | એ | نزج | 723 | 22 | | | | - 50 | | | | 5 | 22 | 6.9 | 896 | 30 | 22 | 6.7 | 6.99 | 30 | KAS | | | | | | | 6 | 22 | 6.9 | 7,56 | 21 | 22 | 6.9 | 7.48 | 28 | | | | | | | | 7 | 32 | 6.9 | 7,27 | 36 | 22 | 6.8 | 7.26 | 27 | | | | | | | | 8 | 21 | 7.4 | 6.79 | 28 | 21 | 7.3 | 7.15 | 30 | | | | | | | | 9 | <u>ચા</u> | 5.8 | 735 | તેશ | al | 5 9 | 7.28 | 29 | | | | | | | | 10 | 21 | 6.1 | 7.57 | 28 | a۱ | 6.0 | 7.29 | 29 | Cd | | | | | | | # ALIVE | | 14 | | | | 8 | | | | | | | | | Ammonia values on Day 0 were measured on the porewater. Ammonia on Days 5 and 10 were measured on the overlying water. Appendices B-1, C, C-1, C-2, C-3, and C-4 (pages 45-100) are available in a separate file (size: 4.3 MB) Click here to view. Appendices D and E-1 (pages 101-157) are available in a separate file (size: 4.3 MB) Click here to view. Appendix E-1 Tables and Figures, and Appendix E-2 (pages 158-220) are available in a separate file (size: 5.0 MB) Click here to view.